首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of side methyl and dimethyl groups of the soft segment component on the microphase‐separated structure and mechanical properties of polyurethane elastomers (PUEs) was investigated. Poly(oxytetramethylene) glycol (PTMG), and PTMG incorporating dimethyl groups (PTG‐X) and methyl side groups (PTG‐L) were used as a polymer glycol, which forms a soft segment in the PUEs. The PUEs were synthesized with 4,4′‐dipheylmethane diisocyanate [1,1′‐methylenebis(4‐isocyanatobenzene)], 1,4‐butane diol, and 1,1,1‐trimethylol propane by a prepolymer method. The degree of microphase separation of the PUEs became weaker with increasing side group content in polymer glycols. Dynamic viscoelastic properties measurement showed reorganized‐crystallization and melting of the soft segment for the PUEs based on PTMG, PTG‐L, and PTG‐X with a lower content of the side groups, but not for a PTG‐L and PTG‐X with higher content of the side groups. Tensile testing revealed that increasing methyl group concentration made the PUEs soften and weaken. The PTMG‐based PUEs obviously exhibited strain‐induced crystallization of the soft segment chains during elongation process. In contrast, for the PTG‐L and PTG‐X‐based PUEs, crystallinity decreased with increasing side group content, and the PUEs with PTG‐L and PTG‐X with highest methyl group content did not crystallize even at a large strain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2054–2063, 2008  相似文献   

2.
The calcium salt of mono(hydroxyethoxyethyl)phthalate [Ca(HEEP)2] was synthesized by the reaction of diethylene glycol, phthalic anhydride, and calcium acetate. Calcium‐containing poly(urethane ether)s (PUEs) were synthesized by the reaction of hexamethylene diisocyanate (HMDI) or tolylene 2,4‐diisocyanate (TDI) with a mixture of Ca(HEEP)2 and poly(ethylene glycol) (PEG300 or PEG400) with di‐n‐butyltin dilaurate as a catalyst. A series of calcium‐containing PUEs of different compositions were synthesized with Ca(HEEP)2/PEG300 (or PEG400)/diisocyanate (HMDI or TDI) molar ratios of 2:2:4, 3:1:4, and 1:3:4 so that the coating properties of the PUEs could be studied. Blank PUEs without calcium‐containing ionic diols were also prepared by the reaction of PEG300 or PEG400 with HMDI or TDI. The PUEs were well characterized by Fourier transform infrared, 1H and 13C NMR, solid‐state cross‐polarity/magic‐angle‐spinning 13C NMR, viscosity, solubility, and X‐ray diffraction studies. The thermal properties of the polymers were also studied with thermogravimetric analysis and differential scanning calorimetry. The PUEs were applied as top coats on acrylic‐coated leather, and their physicomechanical properties were also studied. The coating properties of PUEs, such as the tensile strength, elongation at break, tear strength, water vapor permeability, flexing endurance, cold crack resistance, abrasion resistance, color fastness, and adhesive strength, were better than the standard values. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2865–2878, 2003  相似文献   

3.
Copper(I) catalyzed azide‐alkyne 1,3‐Huisgen cycloaddition reaction afforded the synthesis of triazole‐containing polyesters and segmented block copolyesters at moderate temperatures. Triazole‐containing homopolyesters exhibited significantly increased (~40 °C) glass transition temperatures (Tg) relative to high temperature, melt synthesis of polyesters with analogous structures. Quantitative synthesis of azido‐terminated poly(propylene glycol) (PPG) allowed for the preparation of segmented polyesters, which exhibited increased solubility and mechanical ductility relative to triazole‐containing homopolyesters. Differential scanning calorimetry demonstrated a soft segment (SS) Tg near ?60 °C for the segmented polyesters, consistent with microphase separation. Tensile testing revealed Young's moduli ranging from 7 to 133 MPa as a function of hard segment (HS) content, and stress at break values approached 10 MPa for 50 wt % HS segmented click polyesters. Dynamic mechanical analysis demonstrated an increased rubbery plateau modulus with increased HS content, and the Tg's of both the SS and HS did not vary with composition, confirming microphase separation. Atomic force microscopy also indicated microphase separated and semicrystalline morphologies for the segmented click polyesters. This is the first report detailing the preparation of segmented copolyesters using click chemistry for the formation of ductile membranes with excellent thermomechanical response. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Surmmary: Polyurethane elastomers (PUEs) were synthesized with poly(oxytetramethylene) glycol (PTMG), 4,4′-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BD)/1,1,1-trimethylol propane (TMP) by a prepolymer method. The degree of microphase separation of bulk and ultrathin films for these PUEs was confirmed by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and atomic force microscopy (AFM). In the bulk films, FT-IR and DSC measurements revealed that the degree of micro-phase separation strengthened with increasing BD content. AFM observation of the BD-PUE showed hard segment domains surrounded by a soft segment matrix. The domains ranged in size from 10-20 nm, while BD/TMP- and TMP PUEs did not have clear domains. On the other hand, AFM observation was carried out on thin films (200 mm in thickness) and ultrathin films (approximately 8-5 nm) prepared by spin-coating the different concentrations of PUE solutions. The microphase separated strucuture under 10 nm in thickness showed marked decreases in the size of the microphase-separated domain.  相似文献   

5.
New segmented polyurethanes with perfluoropolyether (PFPE) and poly(ethylene oxide) blocks were synthesized from a fluorinated macrodiol mixed with poly(ethylene glycol) (PEG) in different ratios as a soft segment, 2,4‐toluene diisocyanate as a hard segment, and ethylene glycol as a chain extender. Fourier transform infrared, NMR, and thermal analysis [differential scanning calorimetry and thermogravimetric analysis (TGA)] were used to characterize the structures of these copolymers. The copolymer films were immersed in a liquid electrolyte (1 M LiClO4/propylene carbonate) to form gel‐type electrolytes. The ionic conductivities of these polymer electrolytes were investigated through changes in the copolymer composition and content of the liquid electrolyte. The relative molar ratio of PFPE and PEG in the copolymer played an important role in the conductivity and the capacity to retain the liquid electrolyte solution. The copolymer with a 50/50 PFPE/PEG ratio, having the lowest decomposition temperature shown by TGA, exhibited the highest ionic conductivity and lowest activation energy for ion transportation. The conductivities of these systems were about 10?3 S cm?1 at room temperature and 10?2 S cm?1 at 70 °C; the films immersed in the liquid electrolyte with an increase of 70 wt % were homogenous with good mechanical properties. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 486–495, 2002; DOI 10.1002/pola.10119  相似文献   

6.
An end‐π‐allylnickel macroinitiator ( 3 ) was prepared by the reaction of poly(ethylene glycol) allenyl methyl ether with an excess amount (5 equiv) of [(π‐allyl)NiOCOCF3]2 ( 1 ) in the presence of PPh3 ([PPh3]/[ 1 ] = 1). The resulting macroinitiator was used as an initiator for the polymerization of 1‐phenylethyl isonitrile ( 4a ) to give a block copolymer [poly(ethylene glycol)‐block‐poly( 4a )]. The molecular weight and composition of the block copolymers were controlled by the molecular weight of 3 and the ratio of 4a to 3 . © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 495–499, 2001  相似文献   

7.
Ring‐opening polymerizations of trimethylene carbonate (TC) and 2,2‐dimethyltrimethylene carbonate (DTC) are initiated from hydroxyl‐terminated polyethylene glycol (PEG) and PEG‐based surfactants (Triton X‐100 or Triton X‐405) in the absence of any catalysts. The metal‐ and solvent‐free polymerizations proceed under melt at 150 °C, affording Triton X‐100‐block‐poly(TC) with Mn of 1400–5200 and Triton X‐100‐block‐poly(DTC) with Mn of 1800–7100 in excellent yields. The molecular weights and the comonomer composition of the resulting copolymers are controlled by the feed ratios of the monomers to the initiators, confirmed by gel permeation chromatography and 1H NMR spectroscopy. The solubilities of the block copolymers composed of hydrophilic PEG segment and hydrophobic poly(TC) or poly(DTC) segment depend on both the compositions and the components. For example, Triton X‐100‐block‐poly (TC) (TC/EG = 9.5/9.5) and Triton X‐405‐block‐poly(TC) (TC/EG = 28/40, 46/40) milky suspend in water, while Triton X‐405‐block‐poly(TC) (TC/EG = 9.7/40) dissolves in water. A dynamic light scattering study reveals that the particle distribution of a copolymer, Triton X‐405‐block‐poly(TC) (TC/EG = 9.7/40) in water, has a monodisperse unimodal pattern ranging from 92 to 368 nm. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1985–1996, 2006  相似文献   

8.
Calcium containing poly(urethane-ether)s (PUEs) were synthesized by the reaction of hexamethylene diisocyanate or toluylene 2,4-diisocyanate (HMDI or TDI) with a mixture of calcium salt of mono(hydroxybutyl)phthalate [Ca(HBP)2] and polyethylene glycol (PEG200 or PEG400). A series of calcium containing PUEs having different composition were synthesized by taking the mole ratio of Ca(HBP)2:PEG200 or PEG400:diisocyanate (HMDI or TDI) as 3:1:4, 2:2:4 and 1:3:4 to study the effect of calcium content on the properties of the copolymer. The structure of the polymers were confirmed by IR, 1H-NMR, 13C-NMR, and solid state 13C-CP-MAS NMR. The polymers were soluble in dimethyl sulfoxide and dimethyl formamide. The initial decomposition temperature of the polymers decreases with increase in calcium content. The Tg value of PUEs increases with increase in calcium content and decreases with increase in soft segment content and length. A single Tg value is observed for the calcium containing PUEs based on PEG200 shows the presence of homogeneous phase. However, two Tg values for the PUEs based on PEG400 for various composition of Ca(HBP)2, PEG400 and diisocyanate (HMDI or TDI) shows the presence of heterogeneous phase. The viscosity of the calcium containing PUEs increases with increase in the soft segment content as well as its length and decreases with increase in calcium content. X-ray diffraction patterns of the polymers show that the HMDI based polymers are partially crystalline and TDI based polymers are amorphous in nature. The dynamic mechanical analysis of the calcium containing PUEs based on HMDI shows that at any given temperature modulus (g and g) increases with increase in the ionic content in the polymers.  相似文献   

9.
The Na2CO3‐promoted polymerization of 1,3‐dioxolan‐2‐one (I) to afford poly(ethylene glycol) III was reinvestigated. The reaction appeared to involve a nucleophilic attack against the carbonyl and methylene groups of I to afford poly(carbonate) II with poly(ethylene glycol) linkages and ethylene oxide IV as a side product (10–22%). As the reaction progressed, poly(carbonate) II decreased and poly(ethylene glycol) III increased. Under some conditions, poly(ethylene glycol)s V and VI with vinyl ether terminal groups were formed unexpectedly. The formation of unsaturated products during the polymerization of I/EO (ethylene oxide) has not been reported in the literature. We believe that vinyl ethers were formed from the degradation of poly(carbonate)s and were accompanied by a reduction in molecular weight. The structures of vinyl ethers V and VI were confirmed by hydrogenation of the double bond into the ethyl ether group in VII and VIII, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 152–160, 2000  相似文献   

10.
A facile and phosgene‐free synthetic route to poly(l ‐tryptophan) 2 by the polycondensation of N‐phenoxycarbonyl‐l ‐tryptophan 1 is described. The monomer 1 was synthesized via the carbamylation of tetrabutylammonium salt of L‐tryptophan with diphenyl carbonate. The polycondensation proceeded smoothly at 60 °C in N,N‐dimethylacetamide in the presence of amines (n‐butylamine, diethylamine, and triethylamine) along with the elimination of phenol and carbon dioxide. The structural analysis of the obtained 2 by Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry revealed that n‐butylamine or diethylamine was successfully incorporated into the chain end of the polypeptide. Furthermore, we have demonstrated the synthesis of a diblock copolymer by utilizing amine‐terminated poly(ethylene glycol) as a source of the polyether segment. The chain length of the polypeptide segment was controlled by varying feed ratio between 1 and the amino group of poly(ethylene glycol). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4565–4571  相似文献   

11.
AB‐type block copolymers with poly(trimethylene carbonate) [poly(TMC); A] and poly(ethylene oxide) [PEO; B; number‐average molecular weight (Mn) = 5000] blocks [poly(TMC)‐b‐PEO] were synthesized via the ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of monohydroxy PEO with stannous octoate as a catalyst. Mn of the resulting copolymers increased with increasing TMC content in the feed at a constant molar ratio of the monomer to the catalyst (monomer/catalyst = 125). The thermal properties of the AB diblock copolymers were investigated with differential scanning calorimetry. The melting temperature of the PEO blocks was lower than that of the homopolymer, and the crystallinity of the PEO block decreased as the length of the poly(TMC) blocks increased. The glass‐transition temperature of the poly(TMC) blocks was dependent on the diblock copolymer composition upon first heating. The static contact angle decreased sharply with increasing PEO content in the diblock copolymers. Compared with poly(TMC), poly(TMC)‐b‐PEO had a higher Young's modulus and lower elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4819–4827, 2005  相似文献   

12.
Water‐soluble fullerenes containing two poly(ethylene glycol) branches [Full‐(PEG)2] were prepared starting from commercial poly(ethylene glycol)‐monomethyl ethers and C60 [Full‐(PEG)2]s chemical characterization was made by FT‐IR, NMR, and MALDI‐TOF mass spectrometric analyses. Their thermal stability was determined by TGA experiments. The capability of C60‐derivatives to induce oligonucleotide cleavage under visible light irradiation was also ascertained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2154–2153, 2008  相似文献   

13.
We report the structure and properties of segmented poly(urethaneurea) (SPUU) with relatively short hard‐segment chains. The SPUU samples comprised poly(tetramethylene glycol) prepolymer as a soft segment and 4,4′‐diphenylmethane diisocyanate (MDI) units as a hard segment that were extended with ethylenediamine. To discuss quantitatively the conformation of the soft‐segment chain in the microphase‐separated domain space, we used SPUU samples for which the molecular weights of the hard‐ and soft‐segment chains are well characterized. The effects of the cohesive force in the hard‐segment chains on the structure and properties of SPUU were also studied with samples of different chain lengths of the hard segment, although the window of xH, the average number of MDI units in a hard‐segment chain, was narrow (2.38 ≤ xH ≤ 2.77). There were urethane groups in the soft segments and urea groups in the hard segments. Because of a strong cohesive force between the urea groups, we could control the overall cohesive force in the hard‐segment chains by controlling the chain lengths of the hard segment. First of all, microphase separation was found to be better developed in the samples with longer hard‐segment chains because of an increase of the cohesive force. It was also found that the interfacial thickness became thinner. The long spacing for the one‐dimensionally repeating hard‐ and soft‐segment domains could be well correlated with the molecular characteristics when the assumption of Gaussian conformation was employed for the soft‐segment chains. This is unusual for strongly segregated block copolymers and might be characteristic of multiblock copolymers containing rod–coil chains. The tensile moduli and thermal stability temperature, TH, increased with an increase of the cohesive force, whereas the glass‐transition temperature, the melting temperature, and the degree of crystallinity of the soft‐segment chains decreased. The increase in TH especially was appreciable, although the variation in the chain length of the hard segment was not profound. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1716–1728, 2000  相似文献   

14.
A new amphiphilic diblock copolymer containing an ionomer segment, poly[(4‐vinylbenzyl triethyl ammonium bromide)‐co‐(4‐methylstyrene)‐co‐(4‐bromomethylstyrene)]‐b‐polyisobutene [poly(4‐VBTEAB)‐b‐PIB], was synthesized by the chemical modification of poly(4‐methylstyrene)‐b‐polyisobutene [poly(4‐MSt)‐b‐PIB]. First, the 4‐methylstyrene moiety in poly(4‐MSt)‐b‐PIB was brominated with azobisisobutyronitrile as an initiator at 60 °C in CCl4, and then the highly reactive benzyl bromide groups were ionized by a reaction with triethylamine in a toluene/isopropyl alcohol (80/20 v/v) mixture at about 85 °C to produce the ionomer diblock copolymer poly(4‐VBTEAB)‐b‐PIB. The solubility of the ionomer block copolymer was quite different from that of the corresponding poly[(4‐methylstyrene)‐co‐(4‐bromomethylstyrene)]‐b‐polyisobutene {poly[(4‐MSt)‐co‐(4‐BrMSt)]‐b‐PIB}. Transmission electron microscopy observations demonstrated that all three diblock copolymers had microphase‐separation structures in which polyisobutene (PIB) domains existed in the continuous phase of the poly(4‐methylstyrene) segment or its derivative segment matrix. Dynamic mechanical thermal analysis measurements showed that poly[(4‐MSt)‐co‐(4‐BrMSt)]‐b‐PIB had two glass‐transition temperatures (Tg's), ?56 °C for the PIB segment and 62 °C for the poly[(4‐MSt)‐co‐(4‐BrMSt)] domain, whereas poly(4‐VBTEAB)‐b‐PIB showed one Tg at ?8 °C of the PIB domain; Tg of the poly[(4‐vinylbenzyl triethyl ammonium bromide)‐co‐(4‐methylstyrene)‐co‐(4‐bromomethylstyrene)] domain was not observable because of the strong ionic interactions resulting in a higher Tg and a retention of modulus up to 124 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2755–2764, 2003  相似文献   

15.
The isomerization polymerization of three alkyl glycidyl carbonates (4), i.e., glycidyl methyl carbonate (4a), ethyl glycidyl carbonate (4b), and glycidyl propyl carbonate (4c), catalyzed by methylaluminum bis(2,6‐di‐t‐butyl‐4‐methylphenoxide) (3) to afford novel poly(orthocarbonate)s, poly[(2‐alkoxy‐1,3‐dioxolane‐2,4‐diyl)oxymethylene]s (5a–c), is described. The polymerization proceeded best at around room temperature and gave 5 having several thousands of Mn. As the alkoxy chain of 4 was lengthened, the polymer yield decreased, while the polymer molecular weight increased. The yields of 5b and 5c, however, were improved by increasing the feed ratio of 3 to 4 from 0.04 to 0.10. The reactivity of 4 was discussed in relation to that of glycidyl alkanoates (1). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 445–453, 1999 (See graphics.)  相似文献   

16.
The effects of the dynamic polymerization method and temperature on the molecular aggregation structure and the mechanical and melting properties of thermoplastic polyurethanes (TPUs) were successfully clarified. TPUs were prepared from poly (ethylene adipate) glycol (Mn = 2074), 4,4′‐diphenylmethane diisocyanate and 1,4‐butanediol by the one‐shot (OS) and the prepolymer (PP) methods in bulk at dynamic polymerization temperatures ranging from 140 to 230 °C. Glass‐transition temperatures (Tgs) of the soft segment and melting points (Tms) of the hard segment domains of OS‐TPUs increased and decreased, respectively, with increasing polymerization temperatures, but those of PP‐TPUs were almost independent of the polymerization temperature. Tgs of the soft segment and Tms of the hard segment domains of these TPUs polymerized above 190 °C were almost the same regardless of the polymerization method. Solid‐state nuclear magnetic resonance spectroscopy (NMR) analyses of OS‐ and PP‐TPUs showed that the relative proton content of fast decay components, which corresponds to the hard segment domains, in these TPUs decreased with increasing polymerization temperatures. These results clearly show that the degree of microphase separation becomes weaker with increasing polymerization temperatures. The temperature dependence of dynamic storage modulus and loss tangent of OS‐TPUs coincided with those of PP‐TPUs at polymerization temperature above 190 °C. The apparent shear viscosity for OS‐ and PP‐TPUs polymerized above 190 °C approached a Newtonian behavior at low shear rates regardless of the polymerization method. These results indicate that TPUs polymerized at higher temperatures form almost the same molecular aggregation structures irrespective of the dynamic polymerization method. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 800–814, 2007  相似文献   

17.
A model multiblock copolymer based on (Poly dimethylsiloxane) (PDMS),–4, 4′‐diphenylmethanediisocyanate (MDI)–(poly ethylene glycol) (PEG) was synthesized by employing two step growth polymerization technique. The effect of annealing on microphase separation of the copolymer surface and bulk, surface composition, hydrogen‐bonding and some properties was investigated by AFM, SAXS, XPS, FTIR, contact angle measurement, and protein adsorption experiment, respectively. It was found that increasing the annealing temperature availed formation of microphase separation and surface enrichment of PDMS, which was accompanied by increase in average interdomain spacing, long period, and the crystallizing degree in the hard domains. But the best microphase separated structure seemed to occur at the annealing temperature of 140 °C; exorbitant annealing temperature might demolish the ordered structure. The annealing temperature dependence of microphase separation was further confirmed by the changes in urea hydrogen‐bonding and melting points characterized by FTIR and DSC, respectively. Protein adsorption experiments revealed that all annealed copolymer films possessed the low protein adsorption. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 208–217, 2007  相似文献   

18.
The miscibility and hydrogen‐bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p‐vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS). The single glass‐transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen‐bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen‐bonding interactions between the oxygen atoms of carbon–oxygen single bonds and carbon–oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C1s peaks and the evolution of three novel O1s peaks in the blends, which supports the suggestion from FTIR analyses. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1957–1964, 2002  相似文献   

19.
Miscible blends of poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(1‐vinylimidazole) (PVI) have been formed in methanol/water (3/2 v/v) solutions. The incorporation of 0.6 wt % C60 into PHEMA leads to hydrophobic interactions and enhanced hydrogen bonding in miscible blends of [60]fullerenated poly(2‐hydroxyethyl methacrylate) (FPHEMA) with PVI. The incorporation of 2.6 wt % C60 into PHEMA increases its tendency to form interpolymer complexes with PVI. Interpolymer complexes are formed when FPHEMA samples containing 0.6, 1.4, and 2.6 wt % C60 are blended with poly(4‐vinylpyridine). The yields of the complexes increase with increasing C60 content in FPHEMA. Calorimetry and Fourier transform infrared spectroscopy studies suggest the importance of hydrophobic interactions in C60‐containing blends and complexes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4316–4327, 2002  相似文献   

20.
A facile synthetic route for the preparation of dicationic ethylene glycol based‐ionic liquids (ILs) via the azide/alkyne “click” reaction is presented. The copper(I) catalyzed, microwave‐assisted azide/alkyne “click” reaction between diazido‐ethylene glycols and the corresponding alkyne containing IL‐head group enables a simple preparation of different sets of poly(ethylene glycol)‐based ILs. Beside tetra‐ and hexa(ethylene glycol)‐based ILs, also oligomeric (Mn = 400 g/mol) and polymeric ILs (Mn up to 1550 g/mol) could be prepared in good yield and with full conversion of the ionic head group. The prepared ILs were extensively characterized via NMR spectroscopy and ESI‐time‐of‐flight (TOF) mass spectroscopy, revealing the formation of multiply charged ions in the negative mode. Thermal stability proved to be exceptionally high (up to 300 °C) together with low glass‐transition temperatures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号