首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

2.
In this study, polymer nanocomposites based on poly(lactic acid) (PLA) and organically modified layered silicates (organoclay) were prepared by melt mixing in an internal mixer. The exfoliation of organoclay could be attributed to the interaction between the organoclay and PLA molecules and shearing force during mixing. The exfoliated organoclay layers acted as nucleating agents at low content and as the organoclay content increased they became physical hindrance to the chain mobility of PLA. The thermal dynamic mechanical moduli of nanocomposites were also improved by the exfoliation of organoclay; however, the improvement was reduced at high organoclay content. The dynamic rheological studies show that the nanocomposites have higher viscosity and more pronounced elastic properties than pure PLA. Both storage and loss moduli increased with silicate loading at all frequencies and showed nonterminal behavior at low frequencies. The nanocomposites and PLA were then foamed by using the mixture of CO2 and N2 as blowing agent in a batch foaming process. Compared with PLA foam, the nanocomposite foams exhibited reduced cell size and increased cell density at very low organoclay content. With the increase of organoclay content, the cell size was decreased and both cell density and foam density were increased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 689–698, 2005  相似文献   

3.
Clay–polyimide [3,3′, 4,4′‐benzophenone tetracarboxylic dianhydride–4,4′‐oxydianiline (BTDA–ODA)] nanocomposites were synthesized from ODA‐modified montmorillonite (organoclay) and poly(amic acid). The layered silicates of organoclay were intercalated by polyimide (BTDA–ODA), as confirmed by X‐ray diffraction and by transmission electron microscopy, and the tensile mechanical properties of the nanocomposites were measured. It was found that the modulus and the maximum stress of these organoclay/BTDA–ODA nanocomposites were much higher than those of pure BTDA–ODA: a twofold increase in the modulus and a one‐half‐fold increase in the maximum stress in the case of 7/93 organoclay–BTDA‐ODA. In addition, the elongation‐for‐break of organoclay/BTDA–ODA nanocomposites is even slightly higher than that of pure BTDA–ODA, which is a sharp contrast to that of conventional inorganics‐filled polymer composites. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2873–2878, 2000  相似文献   

4.
Nanocomposites based on biodegradable polycaprolactone (PCL) and organically modified layered silicates (organoclay) were prepared by melt mixing. Their structures and properties were characterized by wide‐angle X‐ray diffraction, thermal analysis, and rheological measurements. The exfoliation of the organoclay was achieved via a melt mixing process in an internal mixer and showed a dependence on the type of organic modifier, the organoclay contents, and the processing temperature. The addition of the organoclay to PCL increased the crystallization temperature of PCL, but a high content of the organoclay could show an inverse effect. The PCL/organoclay nanocomposites showed a significant enhancement in their mechanical properties and thermal stability due to the exfoliation of the organoclay. The nanocomposites showed a much higher complex viscosity than the neat PCL and significant shear‐thinning behavior in the low frequency range. The shear storage modulus and loss modulus of the nanocomposites also exhibited less frequency dependence than the pure PCL in the low frequency range, and this was caused by the strong interactions between the organoclay layers and PCL molecules and by the good dispersion of exfoliated organoclay platelets in the PCL. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 670–678, 2003  相似文献   

5.
Poly(trimethylene terephthalate) (PTT)/montmorillonite (MMT) nanocomposites were prepared by the solution intercalation method. Two different kinds of clay were organomodified with an intercalation agent of cetyltrimetylammonium chloride (CMC). X‐ray diffraction (XRD) indicated that the layers of MMT were intercalated by CMC, and interlayer spacing was a function of the cationic exchange capacity of clay. The XRD studies demonstrated that the interlayer spacing of organoclay in the nanocomposites depends on the amount of organoclay. From the results of differential scanning calorimetric analysis, it was found that clay behaves as a nucleating agent and enhances the crystallization rate of PTT. The maximum enhancement of the crystallization rate for the nanocomposites was observed in nanocomposites containing about 1 wt % organoclay with a range of 1–15 wt %. From thermogravimetric analysis, we found that the thermal stability of the nanocomposites was enhanced by the addition of 1–10 wt % organoclay. According to transmission electron microscopy, the organoclay particle was highly dispersed in the PTT matrix without a large agglomeration of particles for a low organoclay content (5 wt %). However, an agglomerated structure did form in the PTT matrix at a 15 wt % organoclay content. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2902–2910, 2003  相似文献   

6.
Exfoliated polyamide‐6 (PA6)/organoclay nanocomposite films with planar‐oriented clay platelets were prepared by the simple hot pressing of melt‐extruded nanocomposite pellets. The average distance between the neighboring clay platelets was controlled by changes in the clay loading content in the nanocomposites. The effects of the clay platelet spacing on the crystallization behavior of PA6 were investigated with transmission electron microscopy and wide‐angle X‐ray diffraction. The crystal lamellae were found to be mainly perpendicular to the clay surface for the nanocomposites with large spacing between the clay sheets at low clay loading contents. This perpendicular orientation morphology was attributed to the strong interactions between the PA6 molecular chain and the clay surface. In contrast, the crystal lamellae were found to be parallel to the clay surface when the spacing between the neighboring clay platelets was less than 30 nm. It was concluded that the confinement crystallization of PA6 within the nanoscale channels formed by clay sheets resulted in this parallel orientation texture. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 284–290, 2006  相似文献   

7.
In this study, different modified polyethylenes with different molar masses and different modification rates were examined as compatibilizers to prepare high density polyethylene/organoclay nanocomposites. Nanocomposites having 5 wt % organo-modified clay and 20 wt % interfacial agent were prepared by melt blending. The effect of compatibilizer molar mass and polarity was investigated on the clay dispersion and on the gas barrier properties. It was observed that the amount of large and dense fillers aggregates was considerably reduced by introduction of an interfacial agent. The nanocomposite final morphology was governed by a diffusion/shear mechanism. A high degree of clay delamination was obtained with the high molar mass compatibilizers, whereas highly swollen clay aggregates resulted from the incorporation of the low molar mass interfacial agents. In the investigated nanocomposites series, the barrier properties could not be directly related to the clay dispersion state but resulted also from the matrix/clay interfacial interactions. A gas transport mechanism based on these both parameters was proposed to explain the barrier properties evolution in these low polar nanocomposites series. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2593–2604, 2008  相似文献   

8.
The aim of this work is to investigate the effects of elongational flow on the nanoscale arrangement of the silicate inside polyamide‐based nanocomposites. Hybrids, at different loadings of a commercial organoclay, were produced by melt compounding using two polyamide matrices, a nylon‐6, and a copolyamide with similar molecular weight and rheological properties. The elongational flow characterization was performed under both isothermal and nonisothermal conditions by using, respectively, an elongational rheometer (SER) and a fiber‐spinning technique. The extensional rheological response of melt‐compounded nanocomposites, correlated to TEM and X‐ray analyses, was used to probe the nanostructural modifications developed during the uniaxial stretching. The results demonstrated that isothermal and nonisothermal elongational flow can modify the nanomorphology of the nanocomposite hybrids affecting the degree of silicate exfoliation as well as the extent of silicate orientation upon the stretching direction. The entity of structural modifications induced by the stretching were highly dependent on the initial nanomorphological state and on the polymer‐clay affinity. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 981–993, 2009  相似文献   

9.
A Brabender mixer was used to deagglomerate and disperse organomodified montmorillonite Cloisite® 30B (3 wt %) in polylactide (PLA) matrix to obtain nanocomposite systems. The influence of compounding conditions such as blending time (6.5, 10, 20, and 30 min) and compression molding on the nanostructure of nanocomposites was investigated. Molecular weight changes of the PLA matrices induced by melt compounding were determined. Good rheological behavior of the PLA during melt blending with Cloisite® 30B was observed. Prolongation of the blending process improved homogenization of the nanocomposites with the formation of more intercalated and exfoliated structures as revealed by transmission electron microscopy (TEM) and X‐ray analysis. Some orientation of the silicate nanoplatelets induced by compression molding of the nanocomposites was revealed by TEM. It was found that an increase of dispersion degree of the silicate layers modified pronouncedly the physical properties of nanocomposites through an increase of thermal stability as revealed by the thermogravimetric analysis, a decrease of crystallizability of the PLA matrix during melt‐crystallization and upon heating from the glassy, amorphous state. Rheological properties of the nanocomposites determined during dynamic frequency sweep appeared to be very sensitive to the nanostructure evolution. Moreover, the scanning electron microscopy and light microscopy investigations showed the presence of the micron‐size inorganic contaminations in the nanocomposites originating from organoclay Cloisite® 30B. These inclusions were resistive to deagglomeration during melt processing. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3392–3405, 2006  相似文献   

10.
A series of aromatic thermotropic liquid crystalline copolyester (TLCP) nanocomposites were prepared by the in situ intercalation polymerization of p‐acetoxybenzoic acid (ABA), terephthalic acid (TPA), and diacetoxynaphthalene (DAN) isomers in the presence of the organoclay. The DAN isomers used in this study were 2,3‐ and 2,7‐naphthylene. We examined the variation of the liquid crystallinity, morphology, and thermal properties of the nanocomposites with organoclay content in the range 0–10 wt %. All the polymer nanocomposites were fabricated with a molar ratio of ABA:TPA:DAN = 2:1:1; they were shown to consist of a nematic liquid crystalline phase for low organoclay contents (≤5 wt %), whereas the hybrids with a higher concentration of organoclay (≥10 wt %) were found not to be mesomorphic. By using transmission electron microscopy, the clay layers in the 2,3‐DAN copolyester hybrids were found to be better dispersed in the matrix polymer than those in the 2,7‐DAN copolyester hybrids. The introduction of an organoclay into the matrix polymer was found to improve the thermal properties of the 2,3‐DAN copolyester hybrids. However, the thermal properties of the 2,7‐DAN copolyester hybrids were found to be worse than those of the pure matrix polymer for all organoclay compositions tested. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 387–397, 2006  相似文献   

11.
Polyamide‐6 (PA6)/montmorillonite (MMT) nanocomposites toughened with maleated styrene/ethylene butylene/styrene (SEBS‐g‐MA) were prepared via melt compounding. Before melt intercalation, MMT was treated with an organic surfactant agent. Tensile and impact tests revealed that the PA6/4% MMT nanocomposite fractured in a brittle mode. The effects of SEBS‐g‐MA addition on the static tensile and impact properties of PA6/4% MMT were investigated. The results showed that the SEBS‐g‐MA addition improved the tensile ductility and impact strength of the PA6/4% MMT nanocomposite at the expenses of its tensile strength and stiffness. Accordingly, elastomer toughening represents an attractive route to novel characteristics for brittle clay‐reinforced polymer nanocomposites. The essential work of fracture (EWF) approach under impact drop‐weight conditions was used to evaluate the impact fracture toughness of nanocomposites toughened with an elastomer. Impact EWF measurements indicated that the SEBS‐g‐MA addition increased the fracture toughness of the PA6/4% MMT nanocomposite. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 585–595, 2005  相似文献   

12.
The melt mixing technique was used to prepare various polypropylene (PP)‐based (nano)composites. Two commercial organoclays (denoted 20A and 30B) served as the fillers for the PP matrix, and two different maleated (so‐called) compatibilizers (denoted PP‐MA and SMA) were employed as the third component. The results from X‐ray diffraction (XRD) and transmission electron microscope (TEM) experiments revealed that 190 °C was an adequate temperature for preparing the nanocomposites. Nanocomposites were achieved only if specific pairs of organoclay and compatibilizer were simultaneously incorporated in the PP matrix. For example, PP/20A(5 wt %)/PP‐MA(10 wt %) and PP/30B(5 wt %)/SMA(5 wt %) composites exhibited nanoscaled dispersion of 20A or 30B in the PP matrix. Differential scanning calorimetry (DSC) results indicated that the organoclays served as nucleation agents for the PP matrix. Generally, their nucleation effectiveness increased with the addition of compatibilizers. The thermal stability enhancement of PP after adding 20A was confirmed with thermogravimetric analysis (TGA). The enhancement became more evident as a suitable compatibilizer was further added. However, for the 30B‐included composites, thermal stability enhancement was not evident. The dynamic mechanical properties (i.e., storage modulus and loss modulus) of PP increased as the nanocomposites were formed; the properties increment corresponded to the organoclay dispersion status in the matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4139–4150, 2004  相似文献   

13.
A novel amorphous polyamide/montmorillonite nanocomposite based on poly(hexamethylene isophthalamide) was successfully prepared by melt intercalation. Wide angle X-ray diffraction and transmission electron microscopy showed that organoclay containing quaternary amine surfactants with phenyl and hydroxyl groups was delaminated in the polymer matrix resulting in well-exfoliated morphologies even at high montmorillonite content. Differential scanning calorimetry results indicated that clay platelets did not induce the formation of a crystalline phase in this amorphous polymer. Tensile tests demonstrated that the addition of nanoclay caused a dramatic increase in Young's modulus (almost twofold) and yield strength of the nanocomposites compared with the homopolymer. The nanocomposites exhibited ductile behavior up to 5 wt % of nanoclay. The improvement in Young's modulus is comparable with semicrystalline aliphatic nylon 6 nanocomposites. Both the main chain amide groups and the amorphous nature of the polyamide are responsible for enhancing the dispersion of the nanofillers, thereby, leading to improved properties of the nanocomposites. The structure-property relationship for these nanocomposites was also explored. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2605–2617, 2008  相似文献   

14.
Small strain Young's moduli of natural rubber (NR)/organoclay nanocomposites were estimated using the Guth–Gold, Halpin–Tsai (HT), and Krieger–Dougherty (KD) models, and compared with experimental measurements of NR vulcanizates containing organo‐montmorillonite (OM) or organo‐sepiolite (OS). To account for the effect on modulus of the NR matrix of the vulcanization‐active modifier in the organoclay, a matrix modulus correction (MMC) term was derived from the vulcanization parameters of the nanocomposites. The KD model gave a better empirical fit with the experimental data than the Guth–Gold model, with both giving good agreement with particle shape factors estimated from transmission electron microscope (TEM) images. The HT model gave the best fit with experiment for both types of nanocomposite, and use of the MMC term meant that the empirical shape factor was sufficiently close to that estimated from TEM images that the model could potentially be used to accurately predict the Young's moduli of NR/OM and NR/OS nanocomposites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1621–1627, 2011  相似文献   

15.
Exfoliated nylon‐11/layered silicate nanocomposites were prepared via in situ polymerization by dispersing organoclay in 11‐aminoundecanoic acid monomer. The original clay was modified by a novel method with 11‐aminoundecanoic acid. In situ Fourier transform infrared spectroscopy results show that stronger hydrogen bonds exist between nylon‐11 and organoclay than that of between nylon‐11 and original clay. The linear dynamic viscoelasticity of organoclay nanocomposites was investigated. Before taking rheological measurements, the exfoliated and intercalating structures and the thermal properties were characterized using X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. The results show that the clay was uniformly distributed in nylon‐11 matrix during in situ polymerization of clay with 4 wt % or less. The presence of clay in nylon‐11 matrix increased the crystallization temperature and the thermal stability of nanocomposites prepared. Rheological properties such as storage modulus, loss modulus, and relative viscosity have close relationship with the dispersion favorably compatible with the organically modified clay. Comparing with neat nylon‐11, the nanocomposites show much higher dynamic modulus and stronger shear thinning behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2161–2172, 2006  相似文献   

16.
Photo‐oxidation of syndiotactic polypropylene–sPP/organoclay nanocomposites was performed. Nanocomposites were prepared in situ by melt compounding of sPP, compatibilizer (iPP grafted with maleic anhydride–iPP‐g‐MAN) and organoclay filler ME C18 (modified with octadecyl ammonium chains in intergaleries of layered silicate, of which silicate layers (about 1 nm thin) were exfoliated). The influence of ME C18 nanoparticles alone (in content region 1 to 15 wt%) and together with compatibilizer iPP‐g‐MAN on the photostability of the sPP nanocomposite was studied. It was found that the silicate ME C18 nanoparticles alone catalyze the photooxidation and shorten the induction period of photo‐oxidation to one fourth (at the content of 5 wt% of ME C18) in comparison with unfilled sPP) and the presence of compatibilizer supports the photo‐oxidation of sPP nanocomposite. The ME C18 nanoparticles decrease the efficiency of UV stabilizers. The rate of photo‐oxidation of sPP/clay nanocomposite after the induction period is significantly higher than unfilled sPP. The mechanism of photo‐oxidation is discussed.  相似文献   

17.
To suppress the repulsive interfacial energy between hydrophilic clay and a hydrophobic polymer matrix for polymer–clay nanocomposites, a third component of amphiphilic nature such as poly(?‐caprolactone) (PCL) was introduced into the styrene–acrylonitrile copolymers (SAN)/Na‐montmorillonite system. Once ?‐caprolactone was polymerized in the presence of Na‐montmorillonite, the successful ring‐opening polymerization of ?‐caprolactone and the well‐developed exfoliated structure of PCL/Na‐montmorillonite mixture were confirmed. Thereafter, SAN was melt‐mixed with PCL/Na‐montmorillonite nanocomposite, and the SAN matrix and PCL fraction were completely miscible to form a homogeneous mixture with retention of the exfoliated state of Na‐montmorillonite, exhibiting that PCL effectively stabilizes the repulsive polymer–clay interface and contributes to the improvement of the mechanical properties of nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 246–252, 2004  相似文献   

18.
Blends were synthesized via the melt blending of a thermotropic liquid‐crystalline polymer (TLCP) and a poly(butylene terephthalate) (PBT) hybrid containing 2 wt % organoclay. A TLCP was also synthesized with side groups based on a nematic liquid‐crystalline phase. The blends of TLCPs with PBT hybrids were melt‐spun with different concentrations of the liquid‐crystalline polymer and different draw ratios (DRs) to produce monofilaments. Regardless of the TLCP concentration in the hybrids, transmission electron microscopy photographs proved that the clay layers of the organoclay were intercalated and partially exfoliated in the PBT matrix. At DR = 1, the maximum enhancement in the ultimate tensile strength was observed for blends containing 8% TLCP, and the tensile strength decreased with further increases in the TLCP concentration. The initial modulus monotonically increased with increasing TLCP concentration. When DR increased from 1 to 44, the increased stretching caused the tensile property to decrease significantly, debonding to occur, and voids to form. These trends with increasing DR were observed in all the systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3667–3676, 2004  相似文献   

19.
Dynamically vulcanized thermoplastic vulcanizate (TPV) nanocomposites based on polyamide-6 (PA6) and acrylonitrile butadiene rubber (NBR) reinforced by halloysite nanotubes (HNT) were prepared via a direct melt mixing process. The effects of HNT on the physical, mechanical, and rheological properties of nanocomposites were investigated. The prepared PA6/NBR/HNT nanocomposites were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning colorimeter (DSC), dynamic mechanical thermal analysis (DMTA), and rheological measurements. The morphology study of prepared nanocomposites shows that the introduction of HNT into the PA6 phase causes a decrease in the size of NBR droplets. The mechanical measurements revealed that Young’s modulus of TPV nanocomposites increased with the HNT loading up to 54%. DMTA results show that the introduction of 10 wt% of HNT into the PA6/NBR TPV leads to a 30% increase in storage modulus. The rheological measurements revealed that the storage modulus of nanocomposites has an increase of more than 200% in the presence of 7 wt% of HNT loading. Analytical stiffness modeling of Young’s modulus of the TPV nanocomposites was investigated using Hui–Shia and Wu models. Both models have some deviations from experimental results and been modified to predict Young’s modulus of the nanocomposites containing HNT with more precisions. The viscosity behavior of TPV nanocomposites was studied using a Carruea–Yasuda model and showed that the yield stress of nanocomposites increases with higher HNT loadings, indicating the formation of a nanotube network along with NBR phase network.  相似文献   

20.
Polyamide 6 (PA6)/montmorillonite (MMT) nanocomposites were prepared via melt intercalation. The structure, mechanical properties, and nonisothermal crystallization kinetics of PA6/MMT nanocomposites were investigated by X‐ray diffraction (XRD), tensile and impact tests, and differential scanning calorimetry (DSC). Before melt compounding, MMT was treated with an organic surfactant agent. XRD traces showed that PA6 crystallizes exclusively in γ‐crystalline structure within the nanocomposites. Tensile measurements showed that the MMT additions are beneficial in improving the strength and the stiffness of PA6, at the expense of tensile ductility. Impact tests revealed that the impact strength of PA6/MMT nanocomposites tended to decrease with increasing MMT content. The nonisothermal crystallization DSC data were analyzed by Avrami, Ozawa, modified Avrami‐Ozawa, and Nedkov methods. The validity of these empirical equations on the nonisothermal crystallization process of PA6/MMT nanocomposites is discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2878–2891, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号