首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antimicrobial polymeric systems were prepared from poly(vinyl phenol) (PVP). Four systems were prepared, two of these based on the modification of the poly(vinyl phenol) by sulfonation with fuming sulfuric acid (SPVP 100k) or by formation of lithium salt of the sulfonated poly(vinyl phenol) brought about by its reaction with lithium hydroxide (LiSPVP 100k). The other two systems were prepared by the electrospinning of poly(vinyl phenol) with molecular weight 20 × 103 (PVP 20k spun) and 100 × 103 (PVP 100k spun). The antimicrobial activity of the polymers was examined against different test microorganisms. The plug-cutting technique revealed the potency of SPVP 100k and LiSPVP 100k as antimicrobial agents. SPVP 100k was inhibitory to the growth of gram-negative bacteria (E. coli and Salmonella choleraesius) and gram-positive bacteria (B. subtilis and S. aureus). On the other hand, LiSPVP 100k had antifungal activity against A. niger, T. rubrum and C. albicans. Generally, it was found that polymer morphology and molecular weight affect the activities against test microorganisms. For example, PVP 20k and PVP 100k in their powder form showed no antimicrobial activity. However the results showed that PVP 20k spun has antibacterial activity against B. subtilis, and there is no growth of the tested microorganisms on the electrospun fibers of PVP 100k spun, revealing its property of being a self-sterilizing material (SSM).

Growth inhibition of different concentrations of polymer SPVP. Inoculation: 6 × 104 cells · ml−1, B. subtilis, S. choleraesius, S. aureus and E. coli.  相似文献   


2.
The effect of needle diameter on the resulting electrospun poly(methyl methacrylate) (PMMA) average nanofiber diameter has been evaluated for three different needle gauges. The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), suggesting a lack of correlation between the needle diameter used and the resulting average nanofiber diameter. Thermogravimetric analysis (TGA) indicated an increase in the thermal stability of PMMA nanofibers when compared to powdered PMMA, while differential scanning calorimetry (DSC) studies evidenced lower glass transition temperatures (Tg) for PMMA nanofibers in the first heating cycle. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This study describes the preparation and characterization of nanofibrous mats obtained by electrospinning poly(ethylene terephthalate) (PET) solutions in trifluoroacetic acid/dichloromethane (TFA/DCM). Special attention was paid to the effect of polymer concentration and solvent properties on the morphology, structure, and mechanical and thermal properties of the electrospun nonwovens. The results show that the spinnable concentration of PET solution in TFA/DCM solvents is above 10 wt %. Mats have nanofibrous morphology with fibers having an average diameter in the range of 200–700 nm (depending on polymer concentration and solvent composition) and an interconnected pore structure. Higher solution concentration favors the formation of uniform fibers without beads and with higher diameter. Morphology and fiber assembly changed with the solvent properties. Solvent mixtures rich in TFA, i.e., those with higher dielectric constant and lower surface tension, originated fibers with small diameter. However, due to the lower volatility, those solvent mixtures also produced more branched and crosslinking fibers, with less morphologic uniformity. Mechanical properties (Young's modulus, ultimate strength, and elongation at break) and thermal properties (glass transition, crystallization, and melting) have been studied for the PET electrospun nanomats and compared with those of the original polymer. Solvent effect on fiber crystallinity was not significant, but a complex effect was observed on the mechanical properties of the electrospun mats, as a consequence of the different structural organization of the fibers within the mat network. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 460–471, 2008  相似文献   

4.
5.
Polyurethane/polyaniline (PU/PANI) and polyurethane‐poly(methyl methacrylate)/polyaniline (PU‐PMMA/PANI) conductive core‐shell particles were synthesized by a two‐stage polymerization process. The first stage was to produce a core of PU or PU‐PMMA via miniemulsion polymerization using sodium dodecyl sulfate (SDS) as the surfactant. The second stage was to synthesize the shell of polyaniline over the surface of core particles. Hydrogen chloride (HCl) and dodecyl benzenesulfonic acid (DBSA) were used as the dopant agents. Ammonium persulfate (APS) was used as the oxidant for the polymerization of ANI. Different concentrations of HCl, DBSA, and SDS would cause different conformations of PANI chains and thus different morphologies of PANI particles. UV–visible spectra revealed that the polaron band was blue‐shifted because of the more coiled conformation of PANI chains by increasing the concentration of DBSA. Besides, with a high concentration of DBSA, both spherical‐ and rod‐shape PANI particles were observed by transmission electron microscope, and the coverage of PANI particles onto the core surfaces was improved. The key point of formation of rod‐type PANI particles was that DBSA was served with a high concentration accompanied with the existence of HCl or SDS. The better coverage of PANI particles over the core surfaces by charging higher DBSA concentrations resulted in a higher conductivity of hybrid particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3902–3911, 2007  相似文献   

6.
Cellulose-rich fibers were isolated from Agave lechuguilla (AL) and Agave fourcroydes (AF) growing in the Mexican northeast. These fibers are a valuable feedstock for the preparation of blends with synthetic polymers like poly(methyl methacrylate), PMMA. Blends of different types of agave fibers (dewaxed, mercerized, and grafted) and PMMA were prepared and investigated by means of tension measurements and dynamic mechanical analysis. The fiber-containing blends are more stable than the plain PMMA. Surprisingly, the mechanical stability of the blends is practically independent of the pretreatment of the fibers. Methyl methacrylate (MMA) was grafted onto the biopolymer fibers initiated by the cerammonium nitrate redox initiator. Grafting yields of 26.5% were realized with fibers from AL while up to 75.8% MMA was grafted onto fibers from AF. The materials were characterized by means of FTIR spectroscopy and DSC.  相似文献   

7.
In this study, the surface plasmon effect of Au nanoparticles was successfully realized in the solid state by embedding the Au nanoparticles on the surface of the transparent polymer fibers for the first time. Electrospinning a poly(methyl methacrylate) (PMMA) and HAuCl4 mixture followed by a wet chemical reduction, the gold nanoparticles were formed on the PMMA nanocomposite electrospun fibers in a well‐distributed manner to give photostable purple color. The Au nanoparticles were all sphere shaped with an average diameter of 12 nm. Specifically, simply adjusting HAuCl4 salt concentration in the electrospinning solution, it is able to control the electrospun fiber diameter and gold nanoparticle content in the resulting PMMA/Au nanocomposite fibers. Therefore, the developed method described herein is simple and effective for the large volume production of PMMA/Au nanocomposite fibers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Polyoxymethylene/thermoplastic polyurethane (POM/TPU) blends containing 10–30 wt % of TPU were electrospun using hexafluoroisopropanol as the solvent. The average fiber diameter increases with the increase in TPU content from 0.68 μm for neat POM fibers to 0.92 μm for POM/TPU 7:3 blend fibers due to the increase in solution viscosity. Core/sheath structure with the major component POM as the core and the minor component TPU as the sheath was observed by transmission electron microscopy and further confirmed by surface N contents of the blend fiber mats. The crystalline melting point and the degree of crystallinity of POM have no obvious change by coelectrospinning with TPU due to lack of interaction between POM and TPU as revealed by Fourier transform infrared spectroscopy. Tensile tests showed that the unusual high ductility of POM fiber mat could be further increased by coelectrospinning with 10 or 20 wt % TPU without significantly decreasing the stiffness and strength. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1853–1859, 2009  相似文献   

9.
The supported aqueous-phase catalysis (SAPC) using hydrated interface has been used to synthesize branched polymers (star and graft) of benzyl methacrylate (BnMA) via atom-transfer radical polymerization (ATRP) in the presence of Na-clay supported catalyst in anisole at ambient temperature. The propagation of star poly(BnMA)s using diPENDTA-Br6, as hexa-functional initiator is confined at the hydrated interface between the support and the liquid medium as evident from the obtained polymers that are catalyst contamination-free, and exhibited moderately narrow molecular weight distributions (Mw/Mn ≤ 1.33). The hexa-functionality of synthesized stars is verified by 1H NMR, the measurement of their intrinsic viscosity ([η]), and radius of gyration (Rg). The polymerization was also recycled up to 5 times to produce star PBnMAs with high initiator efficiency. The star polymers prepared using hydrated Na-clay supported is compared with star prepared using covalent silica supported catalyst system. The star polymer obtained from covalently supported catalyst gave broad Mw/Mn and poor initiator efficiency. The polystyrene-graft-PBnMA (PS-g-PBnMA) copolymer is also prepared using hydrated Na-clay supported catalyst system in anisole at ambient temperature. The graft-copolymer had narrow Mw/Mn and was confirmed using 1H NMR and atomic force microscopy. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2225–2237  相似文献   

10.
Electroactive polyamides containing dense oligoaniline functionalizations (PAs) were synthesized via oxidative coupling polymerization followed by postpolymerization functionalization, and exhibit excellent solubility, good thermal stability and reversible electroactivity. Interesting spectroscopic changes that occurred through chemical oxidation have been shown, which demonstrate the potential of PAs as an electrochromic material. As a result, the electrochromic behaviors of PAs were investigated in detail, exhibiting high contrast value, moderate switching time, and satisfactory coloration efficiency. Tunable conductive and dielectric properties have also been accomplished by varying the incorporation of oligoaniline segments. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3343–3349  相似文献   

11.
Poly(L-lactide) (PLLA) and poly(epsilon-caprolactone) (PCL) ultrafine fibers were prepared by electrospinning. The influence of cationic and anionic surfactants on their enzymatic degradation behavior was investigated by measuring weight loss, molecular weight, crystallinity, and melting temperature of the fibers as a function of degradation time. Under the catalysis of proteinase K, the PLLA fibers containing the anionic surfactant sodium docecyl sulfate (SDS) exhibited a faster degradation rate than those containing cationic surfactant triethylbenzylammonium chloride (TEBAC), indicating that surface electric charge on the fibers is a critical factor for an enzymatic degradation. Similarly, TEBAC-containing PCL fibers exhibited a 47% weight loss within 8.5 h whereas SDS-containing PCL fibers showed little degradation in the presence of lipase PS. By analyzing the charge status of proteinase K and lipase PS under the experimental conditions, the importance of the surface charges of the fibers and their interactions with the charges on the enzymes were revealed. Consequently, a "two-step" degradation mechanism was proposed: (1) the enzyme approaches the fiber surface; (2) the enzyme initiates hydrolysis of the polymer. By means of differential scanning calorimetry and wide-angle X-ray diffraction, the crystallinity and orientation changes in the PLLA and PCL fibers during the enzymatic degradation were investigated, respectively.  相似文献   

12.
Centrifugal force spinning (CFS), also known as centrifugal spinning, forcespinning, or rotary jet spinning, provides considerably higher production rates than electrospinning (ES), but the more widespread use of CFS as an alternative depends on the ability to produce fibers with robust thermal and mechanical properties. Here, we report the CFS of poly(ethylene oxide) (PEO) fibers made using a spinning dope formulated with acetonitrile (AcN) as the volatile solvent, and we describe the thermal and mechanical properties of the centrifugally-spun fibers. Even though the formation, diameter, and morphology of electrospun and centrifugally-spun PEO fibers are relatively well-studied, the article presents three crucial contributions: the pioneering use of PEO solutions in AcN as spinning dope, characterization of crystallinity and mechanical properties of the centrifugally-spun PEO fibers, and a comparison with the corresponding properties of electrospun fibers. We find that fiber formation occurrs for the chosen CFS conditions if polymer concentration exceeds the entanglement concentration, determined from the measured specific viscosity. Most significantly, the centrifugally spun PEO fibers display crystallinity, modulus, elongation-at-break, and fiber diameter that rival the properties of electrospun PEO fibers reported in the literature.  相似文献   

13.
The strain hardening modulus, defined as the slope of the increasing stress with strain during large strain uniaxial plastic deformation, was extracted from a recently proposed constitutive model for the finite nonlinear viscoelastic deformation of polymer glasses, and compared to previously published experimental compressive true stress versus true strain data of glassy crosslinked poly(methyl methacrylate) (PMMA). The model, which treats strain hardening predominantly as a viscous process, with only a minor elastic contribution, agrees well with the experimentally observed dependence of the strain hardening modulus on strain rate and crosslink density in PMMA, and, in addition, predicts the well-known decrease of the strain hardening modulus in polymer glasses with temperature. General scaling aspects of continuum modeling of strain hardening behavior in polymer materials are also presented. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1464–1472, 2010  相似文献   

14.
Fibrous poly(L-lactide) (PLLA) and bicomponent PLLA/poly(ethylene glycol) mats were prepared by electrospinning and then were coated with chitosan. The presence of chitosan coating was proved by scanning electron microscopy and by fluorescence microscopy. On contact with blood, the chitosan coating led to changes in erythrocyte shape and in their aggregation. The haemostatic activity of the mats increased with increasing chitosan content. Microbiological studies against Staphylococcus aureus revealed that the chitosan coating imparts antibacterial activity to the hybrid mats. The combined haemostatic and antibacterial activities render these novel materials suitable for wound-healing applications.  相似文献   

15.
The emulsion polymerization of methyl methacrylate in the presence of chitosan with potassium persulfate (KPS) as an initiator was examined in a previous article. The free radicals that dissociated from KPS not only initiated the polymerization but also degraded the chitosan molecules. Therefore, in addition to its role as a cationic surfactant, chitosan also participated in the polymerization reaction. When the polymerization was complete, the latex polymer consisted of poly(methyl methacrylate) (PMMA) homopolymer and chitosan–PMMA copolymer. In this article, the structures and thermal properties of latex polymers are examined. Gel permeation chromatography was used to measure the molecular weight of the PMMA homopolymer, with the copolymer composition determined by an elemental analyzer. Scanning and transmission electronic microscopes were used to measure the size of latex particles from different reaction systems. The surface charges of latex particles at several different pH values were determined by the measurement of the ζ potential. All results agreed with the reaction mechanism proposed in the previous article. Finally, the presence of rigid chitosan increased the glass-transition temperature of the final latex polymers. Thermogravimetric analysis showed that the degradation behavior of latex polymers was similar to the unzipping mechanism of PMMA, yet the presence of chitosan units hindered the unzipping of the main chains in chitosan–PMMA copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1646–1655, 2001  相似文献   

16.
Microspheres consisting of a poly(methyl methacrylate) (PMMA) shell wrapping the conductive polyaniline (PANI) particle as a core were prepared by an in-situ suspension polymerization method and then adopted as an electrorheological (ER) material. The polymerization reaction and encapsulation were confirmed by Fourier transform infrared spectrum analysis. The rod-like PANI particles were synthesized via an emulsion polymerization protocol and observed by transmission electron microscopy. In addition, a spherical shape of encapsulated PANI/PMMA (core/shell) microspheres was observed by scanning electron microscopy. The thermal stability of PANI/PMMA particles was examined by use of thermogravimetric analysis. The PANI/PMMA particle-based suspension in silicone oil exhibited typical ER behavior. The conductivity of PANI/PMMA particles was much lower than that of the rod-like PANI.  相似文献   

17.
Syndiotactic poly(methyl methacrylate (s-PMMA) may undergo aggregation in n-butyl chloride (n-BuCl) at temperatures below the theta temperature. The aggregation behavior of the s-PMMA with weight-average molecular weight M(w) =6.06 x 10(5) g mol(-1) was studied by a combination of static and dynamic laser-light-scattering experiments. A solution of concentration 1.12 x 10(-4) g mL(-1) was quenched from 50 degrees C (above the theta temperature in n-BuCl, 35 degrees C to 12 degrees C, and the aggregation process was measured over 60 h. The time dependence of M(w) the root-mean-square z-average radius of gyration < R(g) >, and the average hydrodynamic radius were used to monitor the growth of the aggregates, with the result M(w) approximately < R(g) > d(f) (where d(f) = 1.98 +/- 0.02), which implies the formation of a fractal aggregate. The observed fractal dimension, d(f), is close to that expected for a reaction-limited cluster aggregation for which d(f) = 2.1. In addition, atomic force microscopy was used to image the aggregates.  相似文献   

18.
In an effort to prepare electrically conductive nanofiber and nanotube materials, polypyrrole/poly(methyl methacrylate) coaxial fibers have been prepared using polymer fibers produced from an electrospinning process. Poly(methyl methacrylate) (PMMA) fibers with an average diameter of 230 nm were initially fabricated by electrospinning as core materials. The PMMA fibers were subsequently coated as templates with a thin layer of polypyrrole (PPy) by in-situ deposition of the conducting polymer from aqueous solution. Hollow PPy tubes were produced by dissolution of the PMMA core from PPy/PMMA coaxial fibers. High-temperature (1000 degrees C) treatment under inert atmosphere converted PPy/PMMA coaxial fibers into carbon tubes by complete decomposition of PMMA fiber core and carbonization of the PPy wall. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and FT-IR spectroscopy confirmed the formation of the PPy/PMMA coaxial fibers, PPy tubes, and carbon tubes.  相似文献   

19.
Electrochemical synthesis of polyaniline (PANI) was carried out under cyclovoltammetric conditions using H2SO4, HCl, HNO3, and HClO4 as supporting electrolytes. The observed different rate of PANI deposit growth depending on the acid in the solution has been explained on the grounds of a different degree of specific adsorption for particular anion. It has been found that morphology of the deposit depends greatly upon the anion present in the solution. Thus, PANI synthesized from the solution of oxyacids results in a dense sponge-like structure while PANI from the hydrochloric acid solution results in a spaghetti-like structure. The structure of the deposit influences the conductivity, being higher for a dense deposit from oxyacid solutions and three orders of magnitude lower in case of a deposit from hydrochloric acid solution. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Electrostatic spinning or electrospinning is now a well‐known process for fabricating ultrafine fibers with diameters in the submicrometer down to nanometer range from materials of diverse origins. The polarity of the emitting electrode (i.e., the one that is in contact with the polymer solution or melt) can be either positive or negative. In the present contribution, the effects of emitting electrode polarity and some processing parameters (i.e., polyamide‐6 (PA‐6) concentration, molecular weight of PA‐6, electrostatic field strength, solution temperature, solvent type, and addition of an inorganic salt) on morphological appearance and average size of the as‐spun PA‐6 fibers were investigated. Scanning electron micrographs showed obvious morphological difference between the fibers obtained under positive and negative polarity of the emitting electrode. The main differences were that the cross section of the as‐spun PA‐6 fibers obtained under the negative electrode polarity was flat, while that of those obtained under the positive one appeared to be round and that the average size of the fibers obtained under the negative electrode polarity was larger than that of those obtained under the positive one. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3699–3712, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号