首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
将具有纳米尺度的全交联型羧基丁腈粉末橡胶(CNBR)与聚丙烯(PP)及用甲基丙烯酸环氧丙酯(GMA)官能化的聚丙烯(PP—g—GMA)进行反应共混,制备了一种新型CNBR/PP热塑性弹性体,用原子力显微镜(AFM)和透射电子显微镜(TEM)研究了CNBR/PP热塑性弹性体的形态,加入PP—g—GMA增容剂后,CNBR分散相的粒子尺寸显著降低,分布也趋于均,与未增容体系相比,增容体系的拉仲强度和断裂仲长率均有大幅度的改善,如CNBR含量为75%时,拉仲强度提高了94%,断裂仲长率增加了136%,用差示扫描量热法(DSC)研究了热塑性弹性体中聚丙烯的结晶行为,在增容体系中,共混前后聚丙烯的结晶温度提高了10℃,表明橡胶粒子或两相界面处形成的反应产物起到了类似成核剂的作用。  相似文献   

2.
Thermoplastic elastomers (TPEs) combine high elasticity with melt processability due to their structural features being based on physical associations rather than chemical crosslinking. Their mechanical properties are governed by the interplay of the different dynamics present in the system (i.e., hard block associations and soft block mobility) combined with their morphology. Irrespective of their exact chemical structure or type of association (crystals, hydrogen bonds, or glassy domains), many soft TPEs show a reduction in toughness at elevated temperatures. In this study, we investigate the high-temperature mechanical properties of a model series of industrially relevant TPEs via systematically varying composition and molecular weight. The results show an increase in temperature resistance and in large-strain stress response as chain length increases. We underline the key parameters that influence the mechanical behavior and explain the observed effect of molecular weight on both the temperature- and rate-dependent large-strain response. A physical network-based model is presented that can explain the experimental findings assuming an improved network connectivity and extended lifetime of the entangled segments with increasing molecular weight.  相似文献   

3.
Blends of polyamide‐1010 (PA1010) and a thermoplastic poly(ester urethane) elastomer (TPU) were prepared by melt extrusion. The impact properties, phase structure, compatibility, and fracture morphology under impact were investigated for PA1010/TPU blends. The results indicated that TPU enhanced the impact strength of PA1010, and the best impact modification effect of the blends was obtained with 20 wt % TPU. The phase structure was investigated with scanning electron microscopy, and the compatibility was investigated with dynamic mechanical analysis and small‐angle X‐ray scattering. The study of the fracture morphology of PA1010/TPU blends indicated that the fracture surface of the blends had special features, consisting of many fibrillar elastomer particles and a conglutination–multilayer structure, as well as many small tubers on this structure. These fracture phenomena could not be found on the fracture surface of pure PA1010. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1177–1185, 2005  相似文献   

4.
A reactive extrusion process was developed to fabricate polymer/graphene nanocomposites with good dispersion of graphene sheets in the polymer matrix. The functionalized graphene nanosheet (f‐GNS) activated by diphenylmethane diisocyanate was incorporated in thermoplastic polyester elastomer (TPEE) by reactive extrusion process to produce the TPEE/f‐GNS masterbatch. And then, the TPEE/f‐GNS nanocomposites in different ratios were prepared by masterbatch‐based melt blending. The structure and morphology of functionalized graphene were characterized by Fourier transform infrared, X‐ray photoelectron spectroscopy, X‐ray diffraction and transmission electron microscopy (TEM). The incorporation of f‐GNS significantly improved the mechanical, thermal and crystallization properties of TPEE. With the incorporation of only 0.1 wt% f‐GNS, the tensile strength and elongation at break of nanocomposites were increased by 47.6% and 30.8%, respectively, compared with those of pristine TPEE. Moreover, the degradation temperature for 10 wt% mass loss, storage modulus at ?70°C and crystallization peak temperature (Tcp) of TPEE nanocomposites were consistently improved by 17°C, 7.5% and 36°C. The remarkable reinforcements in mechanical and thermal properties were attributed to the homogeneous dispersion and strong interfacial adhesion of f‐GNS in the TPEE matrix. The functionalization of graphene was beneficial to the improvement of mechanical properties because of the relatively well dispersion of graphene sheets in TPEE matrix, as suggested in the TEM images. This simple and effective approach consisting of chemical functionalization of graphene, reactive extrusion and masterbatch‐based melt blending process is believed to offer possibilities for broadening the graphene applications in the field of polymer processing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Poly(propylene) (PP)/PP grafted styrene‐butadiene rubber (PP‐g‐SBR) nanocomposite was prepared by blending PP with PP‐g‐SBR using dynamical photografting. The crystal morphological structure, thermal behavior, and mechanical properties of PP/PP‐g‐SBR nanocomposites have been studied by photoacoustic Fourier transform infrared spectroscopy (PAS‐FT‐IR), wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and mechanical measurements. The data obtained from the mechanical measurements show that the PP‐g‐SBR as a modifier can considerably improve the mechanical properties of PP/PP‐g‐SBR nanocomposites, especially for the notched Izod impact strength (NIIS). The NIIS of the nanocomposite containing 2 wt% PP‐g‐SBR measured at 20°C is about 2.6 times that of the control sample. The results obtained from PAS‐FTIR, WAXD, SEM, and DSC measurements revealed the enhanced mechanism of impact strength of PP/PP‐g‐SBR nanocomposites as follows: (i) the β‐type crystal of PP formed and its content increased with increasing the photografting degree of PP‐g‐SBR; (ii) the size of PP‐g‐SBR phase in the PP/PP‐g‐SBR nanocomposites obviously reduced and thus the corresponding number of PP‐g‐SBR phase increased with increasing the photografting degree of PP‐g‐SBR. All the earlier changes on the crystal morphological structures are favorable for increasing the compatibility and enhancing the toughness of PP at low temperature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The ABA‐type triblock copolymers consisting of poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] as outer hard segments and poly(6‐acetoxyhexyl vinyl ether) [poly(AcHVE)], poly(6‐hydroxyhexyl vinyl ether) [poly(HHVE)], or poly(2‐(2‐methoxyethoxy)ethyl vinyl ether) [poly(MOEOVE)] as inner soft segments were synthesized by sequential living cationic polymerization. Despite the presence of polar functional groups such as ester, hydroxyl, and oxyethylene units in their soft segments, the block copolymers formed elastomeric films. The thermal and mechanical properties and morphology of the block copolymers showed that the two polymer segments of these triblock copolymers were segregated into microphase‐separated structure. Effect of the functional groups in the soft segments on gas permeability was investigated as one of the characteristics of the new functional thermoplastic elastomers composed solely of poly(vinyl ether) backbones. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1114–1124  相似文献   

7.
Graft copolymer of natural rubber and poly(methyl methacrylate) (NR‐g‐PMMA) was prepared using semi‐batch emulsion polymerization technique via bipolar redox initiation system. It was found that the grafted PMMA increased with the increase of methyl methacrylate (MMA) concentration used in the graft copolymerization. The NR‐g‐PMMA was later used to prepare thermoplastic vulcanizates (TPVs) by blending with PMMA through dynamic vulcanization technique. Conventional vulcanization (CV) and efficient sulphur vulcanization (EV) systems were studied. It was found that the CV system provided polymer melt with lower shear stress and viscosity at a given shear rate. This causes ease of processability of the TPVs via extrusion and injection molding processes. Furthermore, the TPVs with the CV system showed higher ultimate tensile strength and elongation. The results correspond to the morphological properties of the TPVs. That is, finer dispersion of the small vulcanized rubber particles were observed in the PMMA matrix. Various blend ratios of the NR‐g‐PMMA/PMMA blends using various types of NR‐g‐PMMA (i.e. prepared using various percentage molar ratios of NR and MMA) were later studied via dynamic vulcanization by a conventional sulphur vulcanization system. It was found that increasing the level of PMMA caused increasing trend of the tensile strength and hardness properties but decreasing level of elongation properties. Increasing level of the grafted PMMA in NR molecules showed the same trend of mechanical properties as in the case of increasing concentration of PMMA used as a blend component. From morphological studies, two phase morphologies were observed with a continuous PMMA phase and dispersed elastomeric phase. It was also found that more finely dispersed elastomeric phase was obtained with increasing the grafted PMMA in the NR molecules. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A new fluorosilicone thermoplastic vulcanizate (TPV) composed of poly(vinylidene fluoride) (PVDF), silicone rubber (SR), and fluororubber (FKM) was successfully prepared through dynamic vulcanization. The morphological structure of the TPVs had core‐shell elastomer particles dispersed in a continuous PVDF matrix. Furthermore, the cross‐linking of core‐shell structure was controlled by adopting different curing agent. The effect of cross‐linking–controlled core‐shell structure on the morphology, crystallization behavior, stress relaxation test, solvent‐resistant properties of the obtained TPVs were investigated. It was found that the shell cross‐link had a significant influence on the crystallinity of the PVDF phase. The core‐shell bicross‐linked TPV was found to provide the lowest rate of relaxation. An obvious stress softening phenomenon was observed in the uniaxial loading‐unloading cycles in tension. The bicross‐linked TPV had good solvent resistant properties. The tensile strength of the bicross‐linked TPV was still 12 MPa even after immersed in butyl acetate for 48 hours.  相似文献   

9.
Reactive melt blends of an ethylene‐propylene‐diene terpolymer (EPDM) based thermoplastic elastomer (TPE), maleic anhydride grafted polypropylene (MAH‐g‐PP), and nylon 6 were prepared in a single screw extruder and evaluated in terms of morphological, rheological, thermal, dynamic mechanical, and mechanical properties of the blends. It was found that MAH‐g‐PP‐co‐nylon 6 copolymers were in situ formed and acted as effective compatibilizers for polypropylene (PP) and nylon 6. Phase separation of PP and EPDM in TPE increased with the addition and increasing amount of MAH‐g‐PP and nylon 6, leading to decreased glass transition temperature (Tg) of TPE and increased crystalline melting temperature (Tm) of PP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Chitosan nanoparticles were fabricated by a method of tripolyphosphate (TPP) cross‐linking. The influence of fabrication conditions on the physical properties and drug loading and release properties was investigated by transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV–vis spectroscopy. The nanoparticles could be prepared only within a zone of appropriate chitosan and TPP concentrations. The particle size and surface zeta potential can be manipulated by variation of the fabrication conditions such as chitosan/TPP ratio and concentration, solution pH and salt addition. TEM observation revealed a core–shell structure for the as‐prepared nanoparticles, but a filled structure for the ciprofloxacin (CH) loaded particles. Results show that the chitosan nanoparticles were rather stable and no cytotoxicity of the chitosan nanoparticles was found in an in vitro cell culture experiment. Loading and release of CH can be modulated by the environmental factors such as solution pH and medium quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
分别用不同的加工温度、挤出螺杆转速、牵引速率在单螺杆挤出机中挤出PP/N6(聚丙烯/尼龙6)共混物,得到不同加工条件下的PP/N6原位成纤复合材料.对不同加工条件下得到的共混物的分散相形态、力学性能进行研究.发现螺杆转速越高、牵引速率越快、加工温度越低,分散的N6纤维尺寸越小,复合材料的力学性能越好.  相似文献   

12.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Thermoplastic elastomer (TPE) comprising air‐dried sheet or natural rubber (ADS or NR) and high‐density polyethylene (HDPE) was prepared by a simple blending technique. NR and HDPE were mixed with each type of phenolic compatibilizer (HRJ‐10518 or SP‐1045) or liquid natural rubber (LNR) at 180°C in an internal mixer. The mixing torque, shear stress, and shear viscosity of the blends increased with increasing amounts of NR. Positive deviation blend (PDB) for the blends containing active hydroxyl methyl phenolic resin in HRJ‐10518 or dimethyl phenolic resin in SP‐1045 was obtained. PDB was not observed for the blends without the compatibilizers or with LNR. The blends with HRJ‐10518 or SP‐1045 were compatible or partially compatible while the LNR blends were incompatible. In the phenolic compatibilized blends, NR dispersed in the HDPE matrix was found in the NR/HDPE blends of 20/80, 40/60, and 50/50 ratios. HDPE dispersed in NR matrix was obtained in the NR/HDPE blend of 80/20 ratio, and the co‐continuous phase was accomplished in the NR/HDPE blend of 60/40 ratio. The NR/HDPE blend at 60/40 ratio compatibilized with HRJ‐10518 and fabricated by a simple plastic injection molding machine exhibited higher ultimate tensile strength and elongation at break (EB). Incorporation of parafinic oil caused a decreasing tendency in tensile strength with increases in EB. The TPNRs exhibited high elastomeric nature with low‐tension set. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The polypropylene‐g‐polystyrene (PP‐g‐PS) copolymers with different grafting ratios are used as compatibilizers to control the size of polystyrene (PS) particles at nanometer scale in polypropylene (PP) matrix. Then the PP/PS insulating nanocomposites (containing 10 wt % PS calculated from PS and PP‐g‐PS) are manufactured. With the increase in grafting ratio of PP‐g‐PS, the size of PS particle is reduced and the interfacial adhesion is enhanced. Meanwhile, the dielectric properties, DC breakdown strength and volume resistivity are increased with the decreasing of PS particle size. The spherulite size of PP is decreased and the boundary between crystals and amorphous regions is blurred or even disappears due to the presence of PS nanoparticles. This evolution of PP structure is attributed to the serious entanglements of PP and PS molecular chains. Finally, the correlation between morphological structure and electrical properties is ultimately established based on the in‐depth understanding of the molecular chain movement, crystal structure, and phase morphology. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 706–717  相似文献   

15.
The nylon 1010/ethylene‐vinyl acetate rubber (EVM)/maleated ethylene‐vinyl acetate copolymers (EVA‐g‐MAH) ternary blends were prepared. The effect of EVM/EVA‐g‐MAH ratio on the toughness of blends was examined. A super tough nylon 1010 blends were obtained by the incorporation of both EVM and EVA‐g‐MAH. Impact essential work of fracture (EWF) model was used to characterize the fracture behavior of the blends. The nylon/EVM/EVA‐g‐MAH (80/15/5) blend had the highest total fracture energy at a given ligament length (5 mm) and the highest dissipative energy density among all the studied blends. Scanning electron microscopy images showed the EVM and EVA‐g‐MAH existed as spherical particles in nylon 1010 matrix and their size decreased gradually with increasing EVA‐g‐MAH content. Large plastic deformation was observed on the impact fracture surface of the nylon/EVM/EVA‐g‐MAH (80/15/5) blend and related to its high impact strength. Then with increasing EVA‐g‐MAH proportion, the matrix shear yielding of nylon/EVM/EVA‐g‐MAH blends became less obvious. EVM and EVA‐g‐MAH greatly increased the apparent viscosity of nylon 1010, especially at low shear rates. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 877–887, 2009  相似文献   

16.
A benzoxazine compound (FDP‐FBz), which possesses a fluorene group and two terminal furan groups, and its corresponding cross‐linked polymer (CR‐FDP‐FBz) have been prepared using 4,4′‐(9‐fluorenylidene)diphenol (FDP), furfurylamine, and formaldehyde as precursors. The chemical structure of FDP‐FBz has been characterized with Fourier‐transform infrared and 1H nuclear magnetic resonance spectroscopies. FDP‐FBz displays a melting point at about 173 °C and a processing window of 52 °C as well as good solubility in common organic solvents. As a result, FDP‐FBz can be fabricated in both molten and solution processes. Under an excitation at 365 nm, FDP‐FBz exhibits a photoluminescent (PL) emission at about 445 nm. The PL intensity of FDP‐FBz is as high as sixfolds of the intensity recorded with FDP. CR‐FDP‐FBz displays a glass transition temperature of 215 °C, a high storage modulus of 3.1 GPa, a 10% weight loss at 384 °C, and a high char yield of 56 wt % (900 °C, in nitrogen). Moreover, CR‐FDP‐FBz has a high refractive index of about 1.65 as a result of incorporating fluorene groups to its structure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4020–4026, 2010  相似文献   

17.
The effect of blend ratio and compatibilization on dynamic mechanical properties of PP/NBR blends was investigated at different temperatures. The storage modulus of the blend decreased with increase in rubber content and shows two Tg's indicating the incompatibility of the system. Various composite models have been used to predict the experimental viscoelastic data. The Takayanagi model fit well with the experimental values. The addition of phenolic modified polypropylene (Ph-PP) and maleic modified polypropylene (MA-PP) improved the storage modulus of the blend at lower temperatures. The enhancement in storage modulus was correlated with the change in domain size of dispersed NBR particles. The effect of dynamic vulcanization using sulfur, peroxide, and mixed system on viscoelastic behavior was also studied. Among these peroxide system shows the highest modulus. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2309–2327, 1997  相似文献   

18.
19.
PP/PP‐g‐MA/MMT/EOR blend nanocomposites were prepared in a twin‐screw extruder at fixed 30 wt % elastomer and 0 to 7 wt % MMT content. Elastomer particle size and shape in the presence of MMT were evaluated at various PP‐g‐MA/organoclay masterbatch ratios of 0, 0.5, 1.0, and 1.5. The organoclay dispersion facilitated by maleated polypropylene serves to reduce the size of the elastomer dispersed phase particles and facilitates toughening of these blend nanocomposites. The rheological data analysis using modified Carreau‐Yasuda model showed maximum yield stress in extruder‐made nanocomposites compared with nanocomposites of reactor‐made TPO. Increasing either MMT content or the PP‐g‐MA/organoclay ratio can drive the elastomer particle size below the critical particle size below which toughness is dramatically increased. The ductile‐brittle transition shift toward lower MMT content as the PP‐g‐MA/organoclay ratio is increased. The D‐B transition temperature also decreased with increased MMT content and masterbatch ratio. Elastomer particle sizes below ~1.0 μm did not lead to further decrease in the D‐B transition temperature. The tensile modulus, yield strength, and elongation at yield improved with increasing MMT content and masterbatch ratio while elongation at break was reduced. The modified Mori‐Tanaka model showed better fit to experimental modulus when the effect of MMT and elastomer are considered individually. Overall, extruder‐made nanocomposites showed balanced properties of PP/PP‐g‐MA/MMT/EOR blend nanocomposites compared with nanocomposites of reactor‐made TPO. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

20.
APP@ETA, as a new type of flame retardant, was prepared by chemically modifying ammonium polyphosphate (APP) with ethanolamine (ETA) and applied to thermoplastic polyurethane (TPU) in this study. Then, the smoke suppression properties and flame‐retardant effects of APP@ETA in TPU composites were evaluated using smoke density test, cone calorimeter test, etc. And, the thermal degradation properties of flame‐retardant TPU composites were investigated by thermogravimetric analysis/infrared spectrometry. The smoke density test results indicated that APP@ETA could obviously improve the luminous flux of TPU composites in the test with or without flame. The cone calorimeter test results showed that total smoke release, smoke production rate and smoke factor of the composites with APP@ETA were significantly decreased than those of the composites with APP. For example, when the loading of APP@ETA or APP was 12.5 wt%, the total smoke release of the sample with APP@ETA decreased to 3.5 m2/m2 from 6.0 m2/m2, which was much lower than that of the sample with APP, reduced by 41.7%. The thermogravimetric analysis results demonstrated that APP@ETA could decrease the initial decomposition temperature and improve the thermal stability at high temperature for TPU composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号