首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel cellulose hydrogels were synthesized through a "one-step" method from cellulose, which was dissolved directly in NaOH/urea aqueous solution, by using epichlorohydrin as crosslinker. Structure and properties of the hydrogels were characterized by using SEM, NMR, and water absorption testing. The hydrogels are fully transparent and display macroporous inner structure. The equilibrium swelling ratios of the hydrogels in distilled water at 25 degrees C are in the range from 30 to 60 g H(2)O/g dry hydrogel. Moreover, the reswelling water uptake of the hydrogels could be achieved to more than 70% compared with their initial swelling states. This work provided a simple and fast method for preparing eco-friendly hydrogels from unsubstituted cellulose.  相似文献   

2.
A novel cellulose solvent, 1.5 M NaOH/0.65 M thiourea aqueous solution, was used to dissolve cotton linters having a molecular weight of 10.1 × 104 to prepare cellulose solution. Regenerated cellulose (RC) films were obtained from the cellulose solution by coagulating with sulfuric acid (H2SO4) aqueous solution with a concentration from 2 to 30 wt %. Solubility of cellulose, structure, and mechanical properties of the RC films were examined by infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, 13C NMR, and tensile tests. 13C NMR analysis indicated that the novel solvent of cellulose is a nonderivative aqueous solution system. The presence of thiourea enhanced significantly the solubility of cellulose in NaOH aqueous solution and reduced the formation of cellulose gel; as a result, thiourea prevented the association between cellulose molecules, leading to the solvation of cellulose. The RC film obtained by coagulating with 5 wt % H2SO4 aqueous solution for 5 min exhibited higher mechanical properties than that with other H2SO4 concentrations and a homogenous porous structure with a mean pore size of 186 nm for free surface in the wet state. The RC film plasticized with 10% glycerin for 5 min had a tensile strength of 107 MPa and breaking elongation of 10%, and about 1% glycerin in the RC film plays an important role in the enhancement of the mechanical properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1521–1529, 2002  相似文献   

3.
Regenerated cellulose (RC)/alginic acid (AL) blend membranes were satisfactorily prepared from 6 wt % NaOH/4 wt % urea aqueous solution by coagulating with 5 wt % CaCl2 aqueous solution, and then treated with 3 wt % HCl. Morphology, crystallinity, mechanical properties, and thermal stability of the membranes were investigated by scanning electron microscopy (SEM), IR and UV spectroscopes, X‐ray diffraction, tensile tests, and thermogravimetric analysis (TGA). The RC/AL blends were miscible in all weight ratios of cellulose to alginate. The membranes have homogeneous mesh structures, and the mesh sizes of the blend membranes (200–2000 nm) significantly increased with increasing alginate content. The crystalline state of the AL membrane prepared from 6 wt % NaOH/4 wt % urea aqueous solution was broken completely, and the crystallinity of the blend membranes decreased with an increase of AL. Comparing with AL membranes, the tensile strength and breaking elongation of the blend membranes were obviously improved in dry and wet states. Therefore, the RC/AL blends offer a promising way of alginate as separate and functional materials used in the wet state. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 451–458, 2001  相似文献   

4.
Summary: Novel regenerated cellulose fibers have been successfully spun from the cellulose dope in NaOH/urea aqueous solution, which could rapidly dissolve cellulose. The fibers possess circular cross‐sections as well as relatively high molecular weight, and a crystallinity index with cellulose II family crystal structure, leading to good mechanical properties. This technology is simple, cheap, and environmentally friendly, promising to substitute for viscose rayon production having hazardous byproducts.

SEM micrograph of the cross‐section of the novel cellulose fibers generated here.  相似文献   


5.
Hydroxyethylcellulose (HEC) was synthesized by a fully homogenous method from cellulose in 7.5 wt.-% NaOH/11 wt.-% urea aqueous solutions under mild conditions. HEC samples were characterized with NMR, SEC-LLS, solubility, and viscosity measurements. The MS and DS values of the obtained HEC samples are in the range from 0.54 to 1.44 and 0.45 to 1.14, respectively, and the relative DS values at C-2 and C-6 hydroxyl groups are slightly higher than those at C-3 hydroxyl groups. HEC samples are soluble in water starting from a MS of 0.57 and DS of 0.49, which display high viscosity in aqueous solutions. Moreover, a NaOH/urea aqueous solution is a stable system for cellulose etherification. In this way, we could provide a simple, pollution-free, and homogeneous aqueous solution system for synthesizing cellulose ethers.  相似文献   

6.
Cold NaOH/urea aqueous dissolved cellulose was studied for the synthesis of benzyl cellulose by etherification with benzyl chloride. By varying the molar ratios of benzyl chloride to OH groups in cellulose (1.5–4.0) and reaction temperatures (65–70 °C), benzyl cellulose with a degree of substitutions (DS) in the range of 0.29–0.54 was successfully prepared under such mild conditions. The incorporation of benzyl groups into cellulose was evidenced by multiple spectroscopies, including FT IR, 1H NMR, 13C NMR, CP/MAS 13C NMR and XRD. In addition, the thermal stability and surface morphology of the benzyl cellulose was also investigated with regard to the degree of substitution. The results indicated that the benzyl cellulose product with a low DS (0.51) in the present study reached the same solubility in many organic solvents as compared to those prepared in heterogeneous media. After benzylation, the sample decomposed at a lower temperature with a wider temperature range, which indicated that the thermal stability of benzyl cellulose was lower than that of the native cellulose. In addition, benzylation resulted in a pronounced reduction in crystallinity as well as a fundamental alteration of morphology of the native cellulose.  相似文献   

7.
Cellulose was dissolved rapidly in a NaOH/thiourea aqueous solution (9.5:4.5 in wt.-%) to prepare a transparent cellulose solution, which was employed, for the first time, to spin a new class of regenerated cellulose fibers by wet spinning. The structure and mechanical properties of the resulting cellulose fibers were characterized, and compared with those of commercially available viscose rayon, cuprammonium rayon and Lyocell fibers. The results from wide angle X-ray diffraction and CP/MAS 13C NMR indicated that the novel cellulose fibers have a structure typical for a family II cellulose and possessed relatively high degrees of crystallinity. Scanning electron microscopy (SEM) and optical microscopy images revealed that the cross-section of the fibers is circular, similar to natural silk. The new fibers have higher molecular weights and better mechanical properties than those of viscose rayon. This low-cost technology is simple, different from the polluting viscose process. The dissolution and regeneration of the cellulose in the NaOH/thiourea aqueous solutions were a physical process and a sol-gel transition rather than a chemical reaction, leading to the smoothness and luster of the fibers. This work provides a potential application in the field of functional fiber manufacturing.  相似文献   

8.
Cellulose multi-filament fibers have been spun successfully on a pilot plant scale, from a cellulose dope in 7 wt% NaOH/12 wt% urea aqueous solution pre-cooled to −12 °C. Coagulation was accomplished in a bath with 10 wt% H2SO4/12 wt% Na2SO4 and then 5 wt% H2SO4 aqueous solution. By using different finishing oil, including H2O, 4% glycerol aqueous solution, 2% polyvinyl alcohol (PVA) aqueous solution, 2% polyethylene glycol octyl phenylether (OP) aqueous solution, mobol and 2%glycerol/1%PVA/1%OP aqueous solution (PGO), we prepared six kinds of the cellulose multi-filaments, with tensile strength of 1.7–2.1 cN/dtex. Their structure and properties were investigated with scanning electron microscope (SEM), 13C NMR solid state, wide-angle X-ray diffraction (WAXD) and tensile testing. The cellulose fibers treated with PGO possessed higher mechanical properties and better surface structure than others. Interestingly, although the orientation of the cellulose multi-filaments is relatively low, the tensile strength of the single-fiber was similar to that of Lyocell. It was worth noting that the dyeability of the multi-filament fibers was superior to viscose rayon.  相似文献   

9.
Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions was studied systematically. The dissolution behavior and solubility of cellulose were evaluated by using (13)C NMR, optical microscopy, wide-angle X-ray diffraction (WAXD), FT-IR spectroscopy, DSC, and viscometry. The experiment results revealed that cellulose having viscosity-average molecular weight ((overline) M eta) of 11.4 x 104 and 37.2 x 104 could be dissolved, respectively, in 7% NaOH/12% urea and 4.2% LiOH/12% urea aqueous solutions pre-cooled to -10 degrees C within 2 min, whereas all of them could not be dissolved in KOH/urea aqueous solution. The dissolution power of the solvent systems was in the order of LiOH/urea > NaOH/urea > KOH/urea aqueous solution. The results from DSC and (13)C NMR indicated that LiOH/urea and NaOH/urea aqueous solutions as non-derivatizing solvents broke the intra- and inter-molecular hydrogen bonding of cellulose and prevented the approach toward each other of the cellulose molecules, leading to the good dispersion of cellulose to form an actual solution.  相似文献   

10.
We successfully synthesized hydroxypropylcellulose (HPC) and methylcellulose (MC) in high yields from cellulose in 6 wt % NaOH/4 wt % urea aqueous solutions at 25 °C. The cellulose derivatives were characterized with NMR, size exclusion chromatography/laser light scattering, gas chromatography (GC), ultraviolet, and solubility measurements in different solvents. According to the results of solution 13C NMR and GC, the individual degree of substitution (DS; i.e., the average number of substituted hydroxyl groups in the monomer unit) at C‐2 hydroxyl groups was slightly higher than the DS values at C‐3 and C‐6 hydroxyl groups for HPC and MC. In comparison with traditional systems, NaOH/urea aqueous solutions were proved to be a stable and more homogeneous reaction medium for preparing cellulose ether with a more uniform microstructure. The low limits for the average number of moles of the substituent groups per monomer unit and the DS value of water‐soluble HPC were 1.03 and 0.85, respectively. MC (DS = 1.48) had good solubility in both water and organic solvents, and the precipitation point occurred at about 67 °C for a 2% (w/v) aqueous solution. In this way, we could provide a simple, pollution‐free, and homogeneous aqueous solution system for synthesizing cellulose ethers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5911–5920, 2004  相似文献   

11.
Cellulose was dissolved rapidly in 4.6 wt % LiOH/15 wt % urea aqueous solution and precooled to –10 °C to create a colorless transparent solution. 13C‐NMR spectrum proved that it is a direct solvent for cellulose rather than a derivative aqueous solution system. The result from transmission electron microscope showed a good dispersion of the cellulose molecules in the dilute solution at molecular level. Weight‐average molecular weight (Mw), root mean square radius of gyration (〈s2z1/2), and intrinsic viscosity ([η]) of cellulose in LiOH/urea aqueous solution were examined with laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 4.6 wt % LiOH/15 wt % urea aqueous solution was established to be [η] = 3.72 × 10?2 M in the Mw region from 2.7 × 104 to 4.12 × 105. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were given as 6.1 nm, 358 nm?1, and 20.8, respectively. The experimental data of the molecular parameters of cellulose agreed with the Yamakawa–Fujii theory of the worm‐like chain, indicating that the LiOH/urea aqueous solution was a desirable solvent system of cellulose. The results revealed that the cellulose exists as semistiff‐chains in the LiOH/urea aqueous solution. The cellulose solution was stable during measurement and storage stage. This work provided a new colorless, easy‐to‐prepare, and nontoxic solvent system that can be used with facilities to investigate the chain conformation and molecular weight of cellulose. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3093–3101, 2006  相似文献   

12.
It has been reported that cellulose is better dissolved in NaOH-water when a certain amount of urea is added. In order to understand the mechanisms of this dissolution and the interactions between the components, the binary phase diagram of urea/water, the ternary urea/NaOH/water phase diagram and the influence of the addition of microcrystalline cellulose in urea/NaOH/water solutions were studied by DSC. Urea/water solutions have a simple eutectic behaviour with a eutectic compound formed by pure urea and ice (one urea per eight water moles), melting at −12.5 °C. In the urea/NaOH/water solutions, urea and NaOH do not interact, each forming their own eutectic mixtures, (NaOH + 5H2O, 4H2O) and (urea, 8H2O), as found in their binary mixtures. When the amount of water is too low to form the two eutectic mixtures, NaOH is attracting water at the expense of urea. In the presence of microcrystalline cellulose, the interactions between cellulose and NaOH/water are exactly the same as without urea, and urea is not interacting with cellulose. A tentative explanation of the role of urea is to bind water, making cellulose-NaOH links more stable. Member of the European Polysaccharide Network of Excellence (EPNOE),  相似文献   

13.
Semidilute solution of cotton lint (CC1) in 8 wt % LiCl/N,N‐dimethylacetamide was investigated using static light scattering (SLS) and rheological measurements. The reduced osmotic modulus estimated by SLS measurements for CC1 solutions are proportional to c1.16 in the semidilute region. From the exponent of 1.16, de Gennes' scaling theory derives the relationship between radius of gyration, Rg, and molecular weight, Mw, of CC1 as RgM0.62 This corresponds to the Mark‐Houwink‐Sakurada exponent of 0.86. This exponent is very close to that estimated from scaling analysis of zero shear rate viscosity, that is 0.85. Apparent radius of gyration, Rg,app, estimated by SLS measurements for CC1 solutions are proportional to c?0.5 in the semidilute region. Rg,app indicates the mesh size of polymer entanglement in the semidilute region. On the assumption of the Gaussian behavior of CC1 molecule in the semidilute region, the exponent of ?0.5 gives the relationship between the molar mass between entanglements, Me, and c as following relationship: Mec?1. This agrees with the concentration dependence on plateau modulus estimated from the dynamic viscoelastic measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2155–2160, 2006  相似文献   

14.
Here, a new solvent system for cellulose is reported. The solvent is a mixed aqueous solution of 1.0 wt.% poly(ethylene glycol) (PEG) and 9.0 wt.% of NaOH. Cellulose powder was added into the mixture at room temperature at first, and freezing it at −15 °C for 12 h following a thaw of the mixture at room temperature under strong stirring. There formed a clean solution of cellulose, and the optical microscopy was used to record the dissolving process. 13C-NMR, FT-IR, XRD, and intrinsic viscosity measurements revealed that there forms a homogeneous solution of cellulose in the new solvent system. The maximum solubility of cellulose with average molecular weight of 1.32 × 105 g mol−1 in the solvent system is 13 wt.%. The cellulose solution in the new solvent system is stable, even for 30 days storage at room temperature.  相似文献   

15.
The morphology and structure of the regenerated cellulose membranes prepared from its NaOH–urea aqueous solution by coagulating with 5 wt% H2SO4–10 wt% Na2SO4 aqueous solution with different temperatures and times were investigated. The pore size, water permeability and physical properties of the membranes were measured with scanning electron micrograph (SEM), wide X-ray diffraction (WXRD), Fourier transfer infrared spectroscopy (FTIR), flow rate method, and tensile testing. The SEM observation revealed that the structure and pore size of the membranes changed drastically as a function of the coagulation temperature. The membranes coagulated at lower temperatures tended to form the relatively small pore size than those at higher temperatures. On the contrary, the membranes coagulated at different times exhibited similar pore size. Interestingly, the mean pore size and water permeability of the membranes increased from 110 nm with standard deviation (SD) of 25 nm and 12 ml h−1 m−2 mmHg−1 respectively to 1,230 nm with SD of 180 nm and 43 ml h−1 m−2 mmHg−1 with an increase in coagulation temperature from 10 to 60°C. However, the membranes regenerated below 20°C exhibited the dense structure as well as good tensile strength and elongation at break. The result from FTIR and ultraviolet-visible (UV-vis) spectroscopy indicated that the relatively strong intermolecular hydrogen bonds exist in the cellulose membranes prepared at lower coagulation temperatures. This work provided a promising way to prepare cellulose materials with different pore sizes and physical properties by controlling the coagulation temperature.  相似文献   

16.
The solution properties of cellulose derivatives are of interest from both technological and purely scientific aspects. At high concentrations these solutions form liquid crystalline structures. In dilute solution cellulosic chains can be described as semiflexible or wormlike with properties intermediate between random coils and rigid rods. A series of fractions of cellulose propionate have been examined by dilute solution viscometry, static and dynamic light scattering, and polarizing microscopy. Power law exponents are considerably larger than those observed for flexible chains and analysis of the intrinsic viscosity and hydrodynamic radii has yielded chain diameters and Kuhn statistical segment lengths. Corresponding aspect ratios from the hydrodynamic measurements are in good agreement with those obtained from polarizing microscopy, as analyzed in light of Flory's theory. Some aggregation and specific solvent effects have been observed, however separation of these effects has proven to be difficult. Results of these studies are compared to previous work for other cellulose derivatives. ©1995 John Wiley & Sons, Inc.  相似文献   

17.
Summary: Cellulose was dissolved rapidly in 9.5 wt.‐% NaOH and 4.5 wt.‐% thiourea aqueous solution pre‐cooled to −5 °C to prepare a transparent solution. Novel cellulose multi‐filament fibers were spun successfully, for the first time, from the cellulose dope on an extended laboratory scale. The results from 13C NMR, scanning electron microscopy and wide angle X‐ray diffraction (WAXD) patterns indicated that the fibers exhibited cellulose II character and possessed a circular cross‐section and smooth surface. The tensile strength of the novel fibers reached 1.9–2.2 cN · dtex−1. 2D WAXD and SAXS patterns revealed that, with a drawing progress, the orientation factor increased and mechanical properties were improved.

SEM micrographs of the novel multi‐filament fibers spun from cellulose solution in a NaOH/thiourea aqueous system pre‐cooled to −5 °C on an extended laboratory scale.  相似文献   


18.
Cellulose gels were prepared from cellulose in lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) solution. When the cellulose concentration in the solution is above the one at which cellulose molecules overlap, cellulose gels were formed. While the gel prepared by the addition of water was turbid, the one prepared by the ion exchange was colorless, transparent, and optically anisotropic. In order to explain this gelation behavior of cellulose, small-angle X-ray scattering (SAXS) measurements of the cellulose solutions and the gels were performed. The SAXS profiles of the cellulose solutions and the gels suggested that the large-scale fluctuation of the molecular chain density in the solution can be the origin of the molecular aggregates formed in the gel. Furthermore, the differences in the structure of the gels at the macroscopic and the molecular level were discussed in terms of the phase separation and the molecular association.  相似文献   

19.
The diffusion coefficient of cetyltrimethylammonium bromide-sodium salicylate in aqueous solutions has been determined, using the dynamic light-scattering technique, as a function of sodium salicylate concentration, as well as of temperature. Using a gel model the results are discussed in terms of intermicellar pseudo-linkages, entanglements of threadlike micelles, and formation of pseudo-network.  相似文献   

20.
探讨了尿素/己内酰胺/氢氧化钠/水溶剂体系对纤维素的溶解和再生情况.利用正交试验确定了该体系各组分的最佳组成(质量分数):尿素10%,己内酰胺4%,氢氧化钠8%.采用红外光谱(FTIR)、热重失重(TGA)分析和X射线衍射(XRD)等手段对再生前后的纤维素进行了表征.结果表明,该溶剂体系对纤维素具有良好的溶解性能,并且是纤维素的直接溶剂;低温有利于纤维素的溶解;溶解再生后的纤维素晶型发生了变化,热稳定性有所降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号