首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The copolymerization of a highly fluorinated cyclic monomer, octafluorocyclopentene (OFCPE, M1), with ethyl vinyl ether (EVE, M2) was investigated with a radical initiator in bulk. Despite the poor homopolymerizability of each monomer, the copolymerization proceeded successfully, and the molecular weights of the copolymers reached up to more than 10,000. Incorporation of the OFCPE units into the copolymer led to an increase in the glass‐transition point. The copolymer composition was determined from 1H NMR spectra and elemental analysis data. The molar fraction of the OFCPE unit in the copolymer increased and approached but did not exceed 0.5. The monomer reactivity ratios were estimated by the Yamada–Itahashi–Otsu nonlinear least‐squares procedure as r1,OFCPE = ?0.008 ± 0.010 and r2,EVE = 0.192 ± 0.015. The reactivity ratios clearly suggest that the copolymerization proceeds alternatively in the case of an excessive feed of OFCPE. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1151–1156, 2002  相似文献   

2.
Cationic ring‐opening copolymerizations of various cyclic ether compounds with volume expanding monomers bearing norbornene backbones [norbornene‐spiro orthocarbonate (N‐SOC) and norbornene‐cyclic carbonate (N‐CC)] were carried out in the presence of a thermally latent initiator 1 . The 10% weight loss decomposition temperatures (Td10) and the volume changes on the copolymerizations were measured for these resultant products. In the comparison between copolymerizations of bifunctional epoxide 2 with N‐SOC and with N‐CC, it was found that N‐CC served as a more useful volume controllable comonomer than N‐SOC. The copolymerizations with N‐CC yielded the products with a decrease in the volume change (volume shrinkage) and with an increase in the monomer feed ratio of N‐CC; Td10 was relatively similar to the homopolymer of epoxide 2 and was observed except when the proportion of N‐CC was more than 20% in the monomer feed ratio of N‐CC. In contrast, similar copolymerizations with N‐SOC did not exhibit such tendencies, probably because of the low efficiency of the copolymerization derived from the low miscibility of N‐SOC for the epoxide. The other copolymerization systems of other bi‐ and monocyclic ether compounds ( 3 – 6 and phenyl glycidyl ether) with N‐CC also indicated an almost similar tendency toward that of the copolymerization with epoxide 2 . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5113–5120, 2004  相似文献   

3.
The radical ring‐opening copolymerization of 2‐isopropenyl‐3‐phenyloxirane (1) with styrene (St) was examined to obtain the copolymer [copoly(1‐St)] with a vinyl ether moiety in the main chain. The copolymers were obtained in moderate yields by copolymerization in various feed ratios of 1 and St over 120 °C; the number‐average molecular weights (Mn) were estimated to be 1800–4200 by gel permeation chromatography analysis. The ratio of the vinyl ether and St units of copoly(1‐St) was estimated with the 1H NMR spectra and varied from 1/7 to 1/14 according to the initial feed ratio of 1 and St. The haloalkoxylation of copoly(1‐St) with ethylene glycol in the presence of N‐chlorosuccinimide produced a new copolymer with alcohol groups and chlorine atoms in the side group in a high yield. The Mn value of the haloalkoxylated polymer was almost the same as that of the starting copoly(1‐St). The incorporated halogen was determined by elemental analysis. The analytical result indicated that over 88% of the vinyl ether groups participated in the haloalkoxylation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3729–3735, 2000  相似文献   

4.
The radical ring‐opening polymerization (RROP) behavior of the following monomers is reviewed, and the possibility for application to functional materials is described: cyclic disulfide, bicyclobutane, vinylcyclopropane, vinylcyclobutane, vinyloxirane, vinylthiirane, 4‐methylene‐1,3‐dioxolane, cyclic ketene acetal, cyclic arylsulfide, cyclic α‐oxyacrylate, benzocyclobutene, o‐xylylene dimer, exo‐methylene‐substituted spiro orthocarbonate, exo‐methylene‐substituted spiro orthoester, and vinylcyclopropanone cyclic acetal. RROP is a promising candidate for producing a wide variety of environmentally friendly functional polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 265–276, 2001  相似文献   

5.
6.
Radical ring‐opening polymerizations of a five‐membered cyclic vinyl sulfone monomer, 2‐vinylthiolane‐1,1‐dioxide (VTDO), was carried out by using p‐toluenesulfonyl iodide (TosI) and bromide (TosBr) as radical initiators, and the corresponding ring‐opened polymer (PVTDO) was obtained. Both TosI and TosBr were found to work as the radical initiators for the polymerization of VTDO in bulk. The use of TosI gave PVTDOs with a broad, multimodal distribution of molecular weight in low yields. When 10 mol % of TosBr was employed, the isolated yield of PVTDO reached 49%, and the obtained PVTDO had a relatively narrow, monomodal molecular weight distribution of 1.8 with an Mn of 4100. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
Infrared (IR) thermography was employed to monitor temperature changes during the copolymerization of a spiroorthoester monomer with an oxetane monomer initiated with a benzyl sulfonium salt. The temperature changes in the polymerizations decreased with the increase of the initial feed ratios of the spiroorthocarbonate monomer. For instance, the temperature in the copolymerization of the equimolar mixture of both of the monomers increased only ~1 °C, whereas that in the homopolymerization of the oxetane monomer increased more than 20 °C. This result indicates that the copolymerization employing spiroorthocarbonate monomers effectively suppress temperature increase, which are responsible to shrinkage during cooling. The suppression of polymerization shrinkage by spiroorthocarbonate was also confirmed by density measurement of the polymers using a gas pycnometer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1388–1393, 2007.  相似文献   

8.
Radical ring‐opening polymerization of 1,1‐dicyano‐2‐vinylcyclopropane 1 was performed in benzonitrile to find the corresponding homopolymer 2 soluble in organic solvents was successfully obtained while that in other solvents gave crosslinked and thus insoluble homopolymer. In addition, 1 underwent radical copolymerization with 1‐cyano‐1‐ester‐2‐vinylcyclopropanes 3 and 4 to afford the corresponding copolymers 7 and 8 . By increasing the content of the 1 ‐derived unit in the resulting copolymers, the solubility of the copolymers in organic solvents became lower and the residual weights at 600 °C and their glass transition temperatures became higher. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1723–1729  相似文献   

9.
Homopolymerization of styrene and methyl methacrylate was carried out at 60–130°C in the presence of a mono-captodatively (cd) substituted ethane bearing nitrile and ethylsulfenyl substituents on the same carbon atom. It was found that the cd-ethane accelerated both styrene and methyl methacrylate polymerizations with no induction period, but the polymerization mode of methyl methacrylate was different from that of styrene. The polymerization rate of styrene was proportional to the 0.46th power of the cd-ethane concentration. However, the cd-ethane produced a reversible radical termination in the case of methyl methacrylate. The mechanism of both polymerizations is discussed in terms of the kinetic and ESR data. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Radical polymerization behavior of a vinyl substituted cyclic carbonate, 4‐phenyl‐5‐vinyl‐1,3‐dioxoran‐2‐one ( 1 ), is described. Radical polymerization of 1 proceeded through selective vinyl polymerization to produce polymers bearing carbonate groups in the side chain, in contrast to that of an oxirane analogue of 1 , 1‐phenyl‐2‐vinyl oxirane that proceeds via the selective ring‐opening fashion. Although the homopolymerization of 1 produce polymers in relatively lower yield, copolymerizations effectively provided cyclic carbonate‐containing copolymers. Nucleophilic addition of primary amines to the resulting homopolymers and copolymers produced the corresponding multifunctional polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 584–592, 2005  相似文献   

11.
Summary: Radical copolymerization of 1,1‐bis(ethoxycarbonyl)‐2‐vinylcyclopropane (ECVCP) with allyl carbonates that contain isopropyl groups yields highly branched polyvinylcyclopropanes. The polymerizations were carried out in the presence of 2,2‐azoisobutyronitrile at 150 °C in chlorobenzene. Structural analysis of the polymers suggested that radical ring‐opening polymerization proceeded through 1,5‐ring‐opening followed by transfer to the allylic carbonate comonomers. Intra‐molecular cyclization, which yields polycyclobutane units, was also observed during the polymerization.

Synthesis of branched 1,1‐bis(ethoxycarbonyl)‐2‐vinylcyclopropane by transfer to the isopropoxy functional allyl carbonate comonomers.  相似文献   


12.
New alternating equimolar copolymers of electrophilic trisubstituted ethylenes, methyl 3-phenyl-2-cyanopropenoate and 2-phenyl-1,1-dicyanoethene, with ethyl, n-butyl, i-butyl, t-butyl, 2-chloroethyl, and phenyl vinyl ethers were prepared by free radical initiation. Chemical compositions of the copolymers are 1 : 1 in broad ranges of monomer ratios. The copolymerization rate of both electrophilic monomers with the vinyl ethers increase in the series 2-chloroethyl > ethyl > phenyl > n-butyl > i-butyl > t-butyl. These variations in the reactivity of the vinyl ethers are discussed in terms of their preferred conformations in donor-acceptor complexes with electrophilic trisubstituted ethylenes. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Bicyclobutanes and cyclobutenes substituted with electron‐attracting groups represent novel classes of reactive monomers. They readily undergo free‐radical and anionic polymerizations to give high polymers consisting of 1,3‐ and 1,2‐enchained cyclobutane rings, respectively. They also copolymerize readily with conventional vinyl monomers. These polymers display numerous attractive properties in comparison with their vinyl counterparts, including enhanced thermal stability, superior optical properties, and higher glass‐transition temperatures. The syntheses of these monomers are reviewed, and suggestions toward future larger scale production are made. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 625–635, 2003  相似文献   

14.
Cationic copolymerization of n‐butyl glycidyl ether (BGE) and 3‐isochromanone (ICM) was investigated using trifluoromethanesulfonic acid (TfOH) as an initiator at 100 °C. In the copolymerization, the reactive site of ICM with the propagating cation was completely different from that in its homopolymerization: in the former, the propagating cation reacted with the carbonyl oxygen of ICM, while in the latter, the propagating cation reacted with the aromatic ring of ICM. In spite of the potential of ICM to undergo the homopolymerization, in the present copolymerization, ICM was consumed smoothly only in the presence of epoxide. As a result, the copolymerization proceeded in a statistic manner to afford the corresponding copolymer bearing ICM‐derived ester linkages distributed in the main chain. Cationic copolymerization of bisphenol A‐diglycidyl ether and ICM was also performed to synthesize the corresponding networked polymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4213–4220  相似文献   

15.
A versatile method was introduced to prepare cyclic polymers from both conjugated and unconjugated vinyl monomers. It was developed on the combination of the RAFT polymerization and the self‐accelerating double strain‐promoted azide‐alkyne click (DSPAAC) reaction. In this approach, a switchable chain transfer agent 1 was designed to have hydroxyl terminals and a functional pyridinyl group. The protonation and deprotonation of pyridinyl group endowed the chain transfer agent 1 with a switchable control capability to RAFT polymerization of both conjugated and unconjugated vinyl monomers. Based on this, RAFT polymerization and the following hydroxyl end group modification were used to prepare various azide‐terminated linear polymers including polystyrene, poly(N‐vinylcarbazole), and polystyrene‐block‐poly(N‐vinylcarbazole). Using sym‐dibenzo‐1,5‐cyclooctadiene‐3,7‐diyne (DBA) as small linkers, the corresponding cyclic polymers were then prepared via the DSPAAC reaction between DBA and azide terminals of the linear precursors. Due to the self‐accelerating property of DSPAAC reaction, this bimolecular ring‐closing reaction could efficiently produce the pure cyclic polymers using excess molar amounts of DBA to linear polymer precursors. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1811–1820  相似文献   

16.
This article describes the anionic copolymerization of glycidyl phenyl ether (GPE) and 1,2‐dihydro‐3H‐naphtho[2,1‐b]pyran‐3‐one (DHNP), a six‐membered aromatic lactone bearing naphthyl moiety. The copolymerization proceeded in a 1:1 alternating manner, to afford the corresponding polyester. The ester linkage in the main chain was cleavable by reduction with lithium aluminum hydride to give the corresponding diol that inherited the structure of the alternating sequence. The copolymerization ability of DHNP permitted its addition as a comonomer to an imidazole‐initiated polymerization of bisphenol A diglycidyl ether. The resulting networked polymer, of which main chain was endowed with the DHNP‐derived rigid naphthalene moieties, showed a higher glass transition temperature than that obtained similarly with using 3,4‐dihydrocoumarin (DHCM) as a comonomer, an analogous aromatic lactone bearing phenylene moiety instead of naphthalene moiety of DHNP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
18.
Synthesis and radical polymerization behavior of N-vinylsaccharin (1) are described. Radical homopolymerization of 1 was carried out in the presence of a radical initiator for 24 h to afford the polymer containing a saccharin moiety in the side group, which was insoluble in common organic solvents. Among the copolymers of 1 with various vinyl monomers such as vinyl acetate (VAc), methyl acrylate (MA), acrylonitrile (AN), and styrene (St), only the copolymer [copoly(1-St)] obtained from 1 and St was soluble in common organic solvents. In the copolymerization of 1 and St, the Q and e values of 1 were estimated to be 0.10 and −1.60, respectively. These values are similar to those of N-vinylphthalimide (Q = 0.36, e = −1.52). The reaction of copoly(1-St) with LiAlH4 was carried out in THF for 24 h to convert the saccharin moiety into the ring-opened structure bearing hydroxy and sulfonamide groups. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3419–3426, 1999  相似文献   

19.
Radical copolymerizations of electron‐deficient 2‐trifluoromethylacrylic (TFMA) monomers and electron‐rich norbornene derivatives and vinyl ethers with azobisisobutyronitrile were investigated by analyzing the kinetics in situ with 1H NMR. Although none of the monomers underwent radical homopolymerization under normal conditions, they copolymerized readily, producing a copolymer containing 60–70 mol % TFMA. Terpolymerization involving these monomers was also investigated. The rates of copolymerization and kinetic chain lengths were determined in some cases on the basis of the in situ kinetics analysis. These radial copolymerizations of TFMA provide a basis for the preparation of chemical‐amplification resist polymers for emerging 157‐nm lithography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1468–1477, 2004  相似文献   

20.
In this article, we offer clear evidence for the radical copolymerizability of porphyrin rings in 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐mediated radical copolymerizations with styrene. The radical copolymerizations of styrene with 5,10,15,20‐tetrakis(pentafluorophenyl)porphyrin (H2TFPP) was conducted using 1‐phenyl‐1‐(2,2,6,6‐tetramethyl‐1‐piperidinyloxy)ethane as an initiator. The refractive index (RI) traces for the size‐exclusion chromatography of the resulting copolymers were unimodal with narrow molecular weight distributions. The RI traces shifted toward higher molecular weight regions as the polymerization progressed, and the number‐average molecular weights were close to those calculated on the basis of the feed compositions and monomer conversions. These features were in good agreement with a TEMPO‐mediated mechanism. The traces recorded by the ultraviolet‐visible (UV‐vis) detector (430 nm) were identical to those obtained by the RI detector, indicating a statistical copolymerization of styrene with H2TFPP. This also indicated that H2TFPP acted as a monomer and not as a terminator or a chain‐transfer agent under the conditions used. A benzyl radical addition to H2TFPP was conducted as a model reaction for the copolymerization using tributyltin hydride as a chain‐transfer agent, affording a reduced porphyrin, 2‐benzyl‐5,10,15,20‐tetrakis(pentafluorophenyl)chlorin 1 , via radical addition to the β‐pyrrole position. The UV‐vis spectrum of 1 was fairly similar to that of poly(styrene‐co‐H2TFPP), indicating that H2TFPP polymerized at its β‐pyrrole position in the TEMPO‐mediated radical polymerization. TEMPO‐mediated radical copolymerizations of styrene with several porphyrin derivatives were also demonstrated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号