首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ion implantation (4 MeV12C2+, 5 MeV16O2+, and 8 MeV28Si2+) on [110] silicon wafers in channeling and random orientation is investigated by micro‐Raman spectroscopy. The profiles were measured using Scanning Electron Microscope (SEM) showing that the ions were penetrating deeper inside the wafer in the channeling case creating a 1–2 µm wide strongly modified region and agreeing with the d‐nuclear reaction analysis measurements. Micro‐Raman spectroscopy was employed for the assessment of the lattice damage, probing the side surface of the cleaved wafers at submicron step. The phonon modifications show strong lattice distortions in zones parallel to the front surface of the wafers and at depths, which agree with the results of the characterization techniques. In these strongly damaged zones, there is a substantial reduction in the phonon intensity, a small shift in wavenumber position, and a large increase in the phonon width. On the basis of a modification of the phonon confinement model that takes under consideration the laser beam profile, the reduction in intensity of scattered light, and the nanocrystallite size distribution from the simulation of the lattice displacements, the main characteristics of the Raman spectra could be reproduced for the random C and O implantations. The results indicate that at a critical doping level, the induced defects and lattice distortions relax by breaking the silicon single crystal into nanocrystallites, thus creating the observed zones of strongly distorted lattice. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Demagnetization owing to high‐energy electron irradiation has been analyzed for permanent magnets used in insertion devices of synchrotron radiation sources, using the Monte Carlo code FLUKA. The experimental data of a thermally treated Nd2Fe14B permanent magnet with a copper or a tantalum block at electron energies ranging from 2 to 8 GeV were compared with the calculation data of the absorbed doses, photoneutron production distributions and star densities. The results indicate that low‐energy photoneutrons and bremsstrahlung photons are not involved in the demagnetization process, and suggest that the star density owing to the photoneutrons is strongly correlated with the demagnetization process.  相似文献   

3.
Small angle inelastic scattering of fast electrons has been used to study carbon and nitrogen K-shell excitation and ionization of HCN. The K→π* transitions in HCN have been investigated with high resolution.  相似文献   

4.
A novel high‐energy multi‐lens interferometer consisting of 30 arrays of planar compound refractive lenses is reported. Under coherent illumination each lens array creates a diffraction‐limited secondary source. Overlapping such coherent beams produces an interference pattern demonstrating strong longitudinal functional dependence. The proposed multi‐lens interferometer was tested experimentally at the 100 m‐long ID11 ESRF beamline in the X‐ray energy range from 30 to 65 keV. The interference pattern generated by the interferometer was recorded at fundamental and fractional Talbot distances. An effective source size (FWHM) of the order of 15 µm was determined from the first Talbot image, proving the concept that the multi‐lens interferometer can be used as a high‐resolution tool for beam diagnostics.  相似文献   

5.
6.
In this work, we study the silicon amorphization dependence on the crystal depth induced by 6‐MeV Al2+ ions implanted in the <110> and randomly oriented silicon crystal channels, which was not directly experimentally accessible in the previous similar high‐energy ion–crystal implantation cases. Accordingly, the micro‐Raman spectroscopy scanning measurements along the crystal transversal cross section of the ion implanted region were performed. The ion fluence was 1017 particles/cm2. The scanning steps were 0.2 and 0.3 µm, for the channeling and random ion implantations, respectively. The obtained results are compared with the corresponding Rutherford backscattering spectra of 1.2‐MeV protons in the random and channeling orientations measured during the channeling implantation. Additionally, scanning electron microscope picture was taken on the transversal cross section of the implanted region in the channeling implantation case. We show here that the obtained silicon amorphization maxima are in excellent agreement with the corresponding estimated maxima of the aluminum concentration in silicon. This clearly indicates that the used specific micro‐Raman spectroscopy scanning technique can be successfully applied for the depth profiling of the crystal amorphization induced by high‐energy ion implantation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A new prism‐array lens for high‐energy X‐ray focusing has been constructed using an array of different prisms obtained from different parabolic structures by removal of passive parts of material leading to a multiple of 2π phase variation. Under the thin‐lens approximation the phase changes caused by this lens for a plane wave are exactly the same as those caused by a parabolic lens without any additional corrections when they have the same focal length, which will provide good focusing; at the same time, the total transmission and effective aperture of this lens are both larger than those of a compound kinoform lens with the same focal length, geometrical aperture and feature size. This geometry can have a large aperture that is not limited by the feature size of the lens. Prototype nickel lenses with an aperture of 1.77 mm and focal length of 3 m were fabricated by LIGA technology, and were tested using CCD camera and knife‐edge scan method at the X‐ray Imaging and Biomedical Application Beamline BL13W1 at Shanghai Synchrotron Radiation Facility, and provided a focal width of 7.7 µm and a photon flux gain of 14 at an X‐ray energy of 50 keV.  相似文献   

8.
The ejected electron spectrum of sodium vapour has been observed at 90° to the direction af an incident electron beam with kinetic energy 500 eV. Comparisons are made with the ultraviolet absorption data.  相似文献   

9.
Mixtures of 47‐Al and 53‐Ti powders (atomic %) have been consolidated using back pressure equal‐channel angular pressing starting with both raw and ball‐milled powders. In situ synchrotron high‐energy X‐ray diffraction studies are presented with continuous Rietveld analysis obtained upon a heating ramp from 300 K to 1075 K performed after the consolidation process. Initial phase distributions contain all intermetallic compounds of this system except Al, with distribution maxima in the outer regions of the concentrations (α‐Ti, TiAl3). Upon annealing, the phase evolution and lattice parameter changes owing to chemical segregation, which is in favour for the more equilibrated phases such as γ‐TiAl, α2‐Ti3Al and TiAl2, were followed unprecedentedly in detail. An initial δ‐TiH2 content with a phase transition at about 625 K upon heating created an intermediate β‐Ti phase which played an important role in the reaction chain and gradually transformed into the final products.  相似文献   

10.
We present the electron energy loss spectra for Ar clusters as a function of incident electron energy and of cluster size. In spectra measured with 100 eV incident electron energy the bulk excitation peak becomes visible for a mean cluster size above 170 atoms per cluster. For 250 eV incident electron energy the bulk excitation peak is clearly observable even for a mean cluster size of 120 atoms per cluster. These experimental results are qualitatively reproduced by a simple calculation that accounts for the mean free path of electrons in Ar clusters; i.e., the penetration depth of incident electrons into the cluster.  相似文献   

11.
It is shown, that hot electrons generated in a semiconductor can transfer their excess free energy into an embedded/adjacent plasmonic metallic structure (reservoir), before it is lost irreversibly to phonons in the semiconductor. Since the plasmon–phonon (and plasmon–photon) scattering in the metallic structure could be much slower than the electron–phonon scattering in the semiconductor, free energy of the hot electrons can be this way effectively protected from phonon emission for a significant amount of time. While the cubic point‐dipole crystal is proposed and studied here specifically as the plasmonic reservoir, other plasmonic structures including planar can be employed. It is also shown how the plasmon‐protected energy can by recycled in a novel, 3rd generation solar cell, be employing a planar plasmonic structure that is simultaneously also an electron collector of the cell. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In the Letter by K. Kempa, the definitions of two auxiliary constants in Eqs. (10) and (11) were incorrectly given by the author. He now wishes to correct these equations. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A procedure to predict the fatigue fracture life of high‐heat‐load components made of GlidCop has been successfully established. This method is based upon the Manson–Coffin equation with a cumulative linear damage law. This prediction was achieved by consolidating the results of experiments and analyses, and considered the effects of environment and creep. A low‐cycle‐fatigue test for GlidCop was conducted so that environment‐dependent Δ?tNf diagrams for any temperature could be prepared. A special test piece was designed to concentrate the strain in a central area locally, resulting in the low‐cycle‐fatigue fracture. The experiments were carried out by repeatedly irradiating a test piece with an electron beam. The results of the experiment confirmed that the observed fatigue life was within a factor of two when compared with the predicted fatigue life, yet located on the safer side.  相似文献   

14.
The structural evolutions of high‐energy (50 MeV) lithium ion (Li3+) irradiated undoped semi‐insulating GaAs (SI‐GaAs) and chromium‐doped SI‐GaAs (GaAs:Cr) were investigated by Raman measurements. It is shown that high‐energy Li3+ irradiation causes amorphization beyond a fluence of 3 × 1013 ions/cm2 in undoped SI‐GaAs. Interestingly, the same fluence of ions does not seem to affect the crystallinity in GaAs:Cr appreciably. The effect of ion irradiation on the change in lattice ordering and anharmonicity of the phonon modes of undoped SI‐GaAs and GaAs:Cr is also compared. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The steady-state distribution function of the energies of non-equilibrium electrons and holes formed as a result of a cascade of electron-electron collisions in the presence of a primary electron flux is found by solving the linearized transport equation in the isotropic scattering approximation. The distributions obtained in this way include dependences on the energy of primary electrons and on the characteristics of the medium. Near the Fermi level they have a singularity and are close to a power law far from this level. A study is made of the possibility of deriving distributions for crystals with a complex energy band structure (in particular, of tungsten).  相似文献   

16.
The nuclear excitation at electron transition (NEET), induced by X rays, is described on the basis of strict collision theory. All stages of the process are considered, including formation of the hole in the electron K shell, its decay accompanied by excitation of the nucleus, filling of the M-vacancy and subsequent deexcitation of the nucleus. The cross sections for the NEET and photoabsorption of X rays near K-edge are calculated. The results agree with the data of Kishimoto et al.  相似文献   

17.
Raman spectroscopy has been used to investigate different conformational states of bovine pancreatic insulin: the native form and several structurally modified states with different extent of denaturation induced by thermo‐chemical treatment and by applying very high pressure (up to 8 GPa) using a diamond anvil cell. High‐pressure results confirm the peculiar strength to volume compression of insulin and largely extend the pressure range of its structural stability (0–4.2 GPa). Above 4.2 GPa, insulin undergoes an irreversible structural transition that, once pressure is released, leaves the sample in a new conformational state. The protein secondary structure after the pressure treatment results in a structure that is somewhat intermediate between that of the native and the thermo‐chemical fibrillar samples. The analysis of the pressure dependence of the Raman spectrum and of several specific spectroscopic markers allows us to follow the path from the native to new pressure‐denatured protein conformation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The development of medium‐energy inelastic X‐ray scattering optics with meV and sub‐meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back‐reflection angular‐dispersion monochromator or analyzer, is analyzed. The results show that the multiple‐beam diffraction effect together with transmission‐induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four‐bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV‐ to sub‐meV‐resolution inelastic X‐ray scattering spectroscopy.  相似文献   

19.
The elemental distribution of a precipitate cross section, situated in a lean Al-Mg-Si-Cu-Ag-Ge alloy, has been investigated in detail by electron energy loss spectroscopy (EELS) and aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). A correlative analysis of the EELS data is connected to the results and discussed in detail. The energy loss maps for all relevant elements were recorded simultaneously. The good spatial resolution allows elemental distribution to be evaluated, such as by correlation functions, in addition to being compared with the HAADF image.The fcc-Al lattice and the hexagonal Si-network within the precipitates were resolved by EELS. The combination of EELS and HAADF-STEM demonstrated that some atomic columns consist of mixed elements, a result that would be very uncertain based on one of the techniques alone. EELS elemental mapping combined with a correlative analysis have great potential for identification and quantification of small amounts of elements at the atomic scale.  相似文献   

20.
EIGER is a single‐photon‐counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead‐time between frames (down to 3 µs) and a dynamic range up to 32‐bit. In this article, the use of EIGER as a detector for electrons in low‐energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8–20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal‐to‐noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号