首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using a special interpolation operator developed by Girault and Raviart (finite element methods for Navier‐Stokes Equations, Springer‐Verlag, Berlin, 1986), we prove that optimal error bounds can be obtained for a fourth‐order elliptic problem and a fourth‐order parabolic problem solved by mixed finite element methods on quasi‐uniform rectangular meshes. Optimal convergence is proved for all continuous tensor product elements of order k ≥ 1. A numerical example is provided for solving the fourth‐order elliptic problem using the bilinear element. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

2.
A low order nonconforming mixed finite element method (FEM) is established for the fully coupled non-stationary incompressible magnetohydrodynamics (MHD) problem in a bounded domain in 3D. The lowest order finite elements on tetrahedra or hexahedra are chosen to approximate the pressure, the velocity field and the magnetic field, in which the hydrodynamic unknowns are approximated by inf-sup stable finite element pairs and the magnetic field by $H^1(\Omega)$-conforming finite elements, respectively. The existence and uniqueness of the approximate solutions are shown. Optimal order error estimates of $L^2(H^1)$-norm for the velocity field, $L^2(L^2)$-norm for the pressure and the broken $L^2(H^1)$-norm for the magnetic field are derived.  相似文献   

3.
We analyze a mixed finite element discretization of a second‐order quasilinear problem based on the Raviart‐Thomas space. We prove that the discrete problem is solvable and provide a local uniqueness result for the solution. We also obtain optimal order L2‐error estimates for both the scalar variable and the associated flux. The main feature of our method is that it is free from the boundness conditions required in previous works on the coefficients of the quasilinear operator. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 90–103, 2004.  相似文献   

4.
Least‐squares mixed finite element schemes are formulated to solve the evolutionary Navier‐Stokes equations and the convergence is analyzed. We recast the Navier‐Stokes equations as a first‐order system by introducing a vorticity flux variable, and show that a least‐squares principle based on L2 norms applied to this system yields optimal discretization error estimates. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 441–453, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10015  相似文献   

5.
We consider the time‐dependent magnetic induction model as a step towards the resistive magnetohydrodynamics model in incompressible media. Conforming nodal‐based finite element approximations of the induction model with inf‐sup stable finite elements for the magnetic field and the magnetic pseudo‐pressure are investigated. Based on a residual‐based stabilization technique proposed by Badia and Codina, SIAM J. Numer. Anal. 50 (2012), pp. 398–417, we consider a stabilized nodal‐based finite element method for the numerical solution. Error estimates are given for the semi‐discrete model in space. Finally, we present some examples, for example, for the magnetic flux expulsion problem, Shercliff's test case and singular solutions of the Maxwell problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We consider the time‐dependent magnetic induction model where the sought magnetic field interacts with a prescribed velocity field. This coupling results in an additional force term and time dependence in Maxwell's equation. We propose two different magnetic diffusivity stabilized continuous nodal‐based finite element methods for this problem. The first formulation simply adds artificial magnetic diffusivity to the partial differential equation, whereas the second one uses a local projected magnetic diffusivity as stabilization. We describe those methods and analyze them semi‐discretized in space to get bounds on stabilization parameters where we distinguish equal‐order elements and Taylor‐Hood elements. Different numerical experiments are performed to illustrate our theoretical findings.  相似文献   

7.
This article focuses on discontinuous Galerkin method for the two‐ or three‐dimensional stationary incompressible Navier‐Stokes equations. The velocity field is approximated by discontinuous locally solenoidal finite element, and the pressure is approximated by the standard conforming finite element. Then, superconvergence of nonconforming finite element approximations is applied by using least‐squares surface fitting for the stationary Navier‐Stokes equations. The method ameliorates the two noticeable disadvantages about the given finite element pair. Finally, the superconvergence result is provided under some regular assumptions. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 421–436, 2007  相似文献   

8.
We provide new insights into the a priori theory for a time‐stepping scheme based on least‐squares finite element methods for parabolic first‐order systems. The elliptic part of the problem is of general reaction‐convection‐diffusion type. The new ingredient in the analysis is an elliptic projection operator defined via a nonsymmetric bilinear form, although the main bilinear form corresponding to the least‐squares functional is symmetric. This new operator allows to prove optimal error estimates in the natural norm associated to the problem and, under additional regularity assumptions, in the L2 norm. Numerical experiments are presented which confirm our theoretical findings.  相似文献   

9.
In this article we analyze the L2 least‐squares finite element approximations to the incompressible inviscid rotational flow problem, which is recast into the velocity‐vorticity‐pressure formulation. The least‐squares functional is defined in terms of the sum of the squared L2 norms of the residual equations over a suitable product function space. We first derive a coercivity type a priori estimate for the first‐order system problem that will play the crucial role in the error analysis. We then show that the method exhibits an optimal rate of convergence in the H1 norm for velocity and pressure and a suboptimal rate of convergence in the L2 norm for vorticity. A numerical example in two dimensions is presented, which confirms the theoretical error estimates. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

10.
The identification problem of a functional coefficient in a parabolic equation is considered. For this purpose an output least squares method is introduced, and estimates of the rate of convergence for the Crank-Nicolson time discretization scheme are proved, the equation being approximated with the finite element Galerkin method with respect to space variables.  相似文献   

11.
In this article we apply the subdomain‐Galerkin/least squares method, which is first proposed by Chang and Gunzburger for first‐order elliptic systems without reaction terms in the plane, to solve second‐order non‐selfadjoint elliptic problems in two‐ and three‐dimensional bounded domains with triangular or tetrahedral regular triangulations. This method can be viewed as a combination of a direct cell vertex finite volume discretization step and an algebraic least‐squares minimization step in which the pressure is approximated by piecewise linear elements and the flux by the lowest order Raviart‐Thomas space. This combined approach has the advantages of both finite volume and least‐squares methods. Among other things, the combined method is not subject to the Ladyzhenskaya‐Babus?ka‐Brezzi condition, and the resulting linear system is symmetric and positive definite. An optimal error estimate in the H1(Ω) × H(div; Ω) norm is derived. An equivalent residual‐type a posteriori error estimator is also given. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 738–751, 2002; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/num.10030.  相似文献   

12.
In this article, we introduce two least‐squares finite element procedures for parabolic integro‐differential equations arising in the modeling of non‐Fickian flow in porous media. By selecting the least‐squares functional properly the presented procedure can be split into two independent subprocedures, one subprocedure is for the primitive unknown and the other is for the flux. The optimal order convergence analysis is established. Numerical examples are given to show the efficiency of the introduced schemes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

13.
This article studies superconvergence phenomena of the split least‐squares mixed finite element method for second‐order hyperbolic equations. By selecting the least‐squares functional properly, the procedure can be split into two independent symmetric positive definite subprocedures, one of which is for the primitive unknown and the other is for the flux. Based on interpolation operators and an auxiliary projection, superconvergent H1 error estimates for the primary variable u and L2 error estimates for the introduced flux variable σ are obtained under the standard quasiuniform assumptions on finite element partition. A numerical example is given to show the performance of the introduced scheme. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 222‐238, 2014  相似文献   

14.
A least‐squares mixed finite element method for linear elasticity, based on a stress‐displacement formulation, is investigated in terms of computational efficiency. For the stress approximation quadratic Raviart‐Thomas elements are used and these are coupled with the quadratic nonconforming finite element spaces of Fortin and Soulie for approximating the displacement. The local evaluation of the least‐squares functional serves as an a posteriori error estimator to be used in an adaptive refinement algorithm. We present computational results for a benchmark test problem of planar elasticity including nearly incompressible material parameters in order to verify the effectiveness of our adaptive strategy. For comparison, conforming quadratic finite elements are also used for the displacement approximation showing convergence orders similar to the nonconforming case, which are, however, not independent of the Lamé parameters. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

15.
0 引  言Raviart&Thomas(1977)[13]基于Babǔska-Brezzi有限元理论[1][5]发展了二阶椭圆问题的基本杂交方法.该文指出,为确定合适的自由度,一般将杂交元刻划为非协调元.然而,对三角形偶数次杂交元和四边形杂交元而言,[13]是通过扩充手段克服有限维空间“匹配”问题的.由于扩充元的复杂性及其不再能刻划为非协调元,以致于实际计算无法选取自由度.Thomas的博士论文[15]提供了一个解决办法.即利用Gauss-Legendre数值求积分公式将扩充元近似刻划成非协调元,得到数值积分意义下的杂交方法.如此处理虽然大大简化了原杂交格式的求解过程,但数…  相似文献   

16.
段火元  梁国平 《计算数学》2003,25(3):265-280
Based on a seperated model for saddle-point problems, we develop a new sta-bilized mixed finite element method. Such a model consists of two subproblems with respect to the primal and the dual variables, respectively. We show that the new method is coercive and that optimal error bounds hold. As an application,the nearly incompressible elastic problem is analyzed with our method.  相似文献   

17.
In this paper, we investigate the superconvergence property and a posteriori error estimates of mixed finite element methods for a linear elliptic control problem with an integral constraint. The state and co-state are approximated by the order k = 1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximations of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order h 2. Moreover, we derive a posteriori error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

18.
We consider an elliptic optimal control problem with control constraints and pointwise bounds on the gradient of the state. We present a tailored finite element approximation to this optimal control problem, where the cost functional is approximated by a sequence of functionals which are obtained by discretizing the state equation with the help of the lowest order Raviart–Thomas mixed finite element. Pointwise bounds on the gradient variable are enforced in the elements of the triangulation. Controls are not discretized. Error bounds for control and state are obtained in two and three space dimensions. A numerical example confirms our analytical findings.  相似文献   

19.
We propose a mixed formulation for quasi‐Newtonian fluid flow obeying the power law where the stress tensor is introduced as a new variable. Based on such a formulation, a mixed finite element is constructed and analyzed. This finite element method possesses local (i.e., at element level) conservation properties (conservation of the momentum and the mass) as in the finite volume methods. We give existence and uniqueness results for the continuous problem and its approximation and we prove error bounds. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004.  相似文献   

20.
The coupled problem for a generalized Newtonian Stokes flow in one domain and a generalized Newtonian Darcy flow in a porous medium is studied in this work. Both flows are treated as a first‐order system in a stress‐velocity formulation for the Stokes problem and a volumetric flux‐hydraulic potential formulation for the Darcy problem. The coupling along an interface is done using the well‐known Beavers–Joseph–Saffman interface condition. A least squares finite element method is used for the numerical approximation of the solution. It is shown that under some assumptions on the viscosity the error is bounded from above and below by the least squares functional. An adaptive refinement strategy is examined in several numerical examples where boundary singularities are present. Due to the nonlinearity of the problem a Gauss–Newton method is used to iteratively solve the problem. It is shown that the linear variational problems arising in the Gauss–Newton method are well posed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1150–1173, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号