首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
For the Poisson equation on rectangular and brick meshes it is well known that the piecewise linear conforming finite element solution approximates the interpolant to a higher order than the solution itself. In this article, this type of supercloseness property is established for a special interpolant of the Q2 ? P element applied to the 3D stationary Stokes and Navier‐Stokes problem, respectively. Moreover, applying a Q3 ? P postprocessing technique, we can also state a superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself. Finally, we show that inhomogeneous boundary values can be approximated by the Lagrange Q2‐interpolation without influencing the superconvergence property. Numerical experiments verify the predicted convergence rates. Moreover, a cost‐benefit analysis between the two third‐order methods, the post‐processed Q2 ? P discretization, and the Q3 ? P discretization is carried out. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

2.
In this article, we discuss a kind of finite element method by using quartic B‐splines to solve Dirichlet problem for elliptic equations. Bivariate spline proper subspace of S(Δ) satisfying homogeneous boundary conditions on Type‐2 triangulations and quadratic B‐spline interpolating boundary functions are primarily constructed. Linear and nonlinear elliptic equations are solved by Galerkin quartic B‐spline finite element method. Numerical examples are provided to illustrate the proposed method is flexible. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 818–828, 2011  相似文献   

3.
In this article we consider a spectral Galerkin method with a semi‐implicit Euler scheme for the two‐dimensional Navier‐Stokes equations with H2 or H1 initial data. The H2‐stability analysis of this spectral Galerkin method shows that for the smooth initial data the semi‐implicit Euler scheme admits a large time step. The L2‐error analysis of the spectral Galerkin method shows that for the smoother initial data the numerical solution u exhibits faster convergence on the time interval [0, 1] and retains the same convergence rate on the time interval [1, ∞). © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

4.
In this paper, we analyze the biharmonic eigenvalue problem by two nonconforming finite elements, Q and E Q. We obtain full order convergence rate of the eigenvalue approximations for the biharmonic eigenvalue problem based on asymptotic error expansions for these two nonconforming finite elements. Using the technique of eigenvalue error expansion, the technique of integral identities, and the extrapolation method, we can improve the accuracy of the eigenvalue approximations. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

5.
This article investigates Petrov‐Galerkin discretizations of operator equations with linearly stable operators, where the residual does not belong to the annihilator W of the discrete test space Wh. Conforming and nonconforming methods are considered separately, and for the treatment of the nonconforming situation the concept of elliptic lifting is introduced. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 241–259, 2002; DOI 10.1002/num.1005  相似文献   

6.
A multilevel finite element method in space‐time for the two‐dimensional nonstationary Navier‐Stokes problem is considered. The method is a multi‐scale method in which the fully nonlinear Navier‐Stokes problem is only solved on a single coarsest space‐time mesh; subsequent approximations are generated on a succession of refined space‐time meshes by solving a linearized Navier‐Stokes problem about the solution on the previous level. The a priori estimates and error analysis are also presented for the J‐level finite element method. We demonstrate theoretically that for an appropriate choice of space and time mesh widths: hjh, kjk, j = 2, …, J, the J‐level finite element method in space‐time provides the same accuracy as the one‐level method in space‐time in which the fully nonlinear Navier‐Stokes problem is solved on a final finest space‐time mesh. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

7.
This paper is a continuation of [8]. We study weighted function spaces of type B and F on the Euclidean space Rn, where u is a weight function of at most exponential growth. In particular, u(χ (±|χ|) is an admissible weight. We deal with atomic decompositions of these spaces. Furthermore, we prove that the spaces B and F are isomorphic to the corresponding unweighted spaces B and F.  相似文献   

8.
For a prime p, we give a construction of perfect nonlinear functions from ? to ? when either of the following conditions holds: (1) np; (2) n<p, and n is a composite number or is the sum of positive composite numbers. It follows that when n≥12, there is a perfect nonlinear function from ? to ? for any prime p. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 229‐239, 2009  相似文献   

9.
For graphs A, B, let () denote the number of subsets of nodes of A for which the induced subgraph is B. If G and H both have girth > k, and if () = () for every k-node tree T, then for every k-node forest F, () = (). Say the spread of a tree is the number of nodes in a longest path. If G is regular of degree d, on n nodes, with girth > k, and if F is a forest of total spread ≤k, then the value of () depends only on n and d.  相似文献   

10.
This article deals with the LORENTZ-MARCINKIEWICZ operator ideal ?? generated by an additive s-function and the LORENTZ-MARCINKIEWICZ sequence space λq(φ). We give eigenvalue distributions for operators belonging to ?? (E, E) and we show the interpolation properties of ??-ideals. Furthermore, we study certain SCHAUDER bases in ?? (H, K), H and K Hilbert spaces.  相似文献   

11.
A time‐stepping procedure is established and analyzed for the problem of miscible displacement in porous medium. The fluid velocity based on mixed element method is post‐processed by interpolation along Gauss lines. Error analysis shows that this procedure has a superconvergence error bound O(h) with respect to the parameter hp, which is one order higher than the conventional Galerkin or mixed finite element procedures. Compared with the results in the references, the parameter constraint conditions in this article are obviously relaxed. © 2011Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

12.
A two‐level method in space and time for the time‐dependent Navier‐Stokes equations is considered in this article. The approximate solution uMHM is decomposed into the large eddy component vHm(m < M) and the small eddy component wH. We obtain the large eddy component v by solving a standard Galerkin equation in a coarse‐level subspace Hm with a time step length k, whereas the small eddy component w is derived by solving a linear equation in an orthogonal complement subspace H with a time step length pk, where p is a positive integer. The analysis shows that our two‐level scheme has long‐time stability and can reach the same accuracy as the standard Galerkin method in fine‐level subspace HM for an appropriate configuration of p and m. Moreover, some numerical examples are provided to complement our theoretical analysis. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

13.
By using the LITTLEWOOD matrices A2n we generalize CLARKSON' S inequalities, or equivalently, we determine the norms ‖A2n: l(LP) → l(LP)‖ completely. The result is compared with the norms ‖A2n: ll‖, which are calculated implicitly in PIETSCH [6].  相似文献   

14.
We consider iterations of satisfaction classes and apply them to construct expansions of models of Peano arithmetic to models of A|Δ+∑-AC. 1991 MSC: 03F35, 03C62.  相似文献   

15.
Motivated by results on interactive proof systems we investigate an ?-?hierarchy over P using word quantifiers as well as two types of set quantifiers. This hierarchy, which extends the (arithmetic) polynomial-time hierarchy, is called the analytic polynomial-time hierarchy. It is shown that every class of this hierarchy coincides with one of the following Classes: ∑, Π (k?0), PSPACE, ∑ or Π (k?1). This improves previous results by Orponen [6] and allows interesting comparisons with the above mentioned results on inter-active proof systems.  相似文献   

16.
This paper is the continuation of [17]. We investigate mapping and spectral properties of pseudodifferential operators of type Ψ with χ χ ? ? and 0 ≤ γ ≤ 1 in the weighted function spaces B (?n, w(x)) and F (?n, w(x)) treated in [17]. Furthermore, we study the distribution of eigenvalues and the behaviour of corresponding root spaces for degenerate pseudodifferential operators preferably of type b2(x) b(x, D) b1(x), where b1(x) and b2(x) are appropriate functions and b(x, D) ? Ψ. Finally, on the basis of the Birman-Schwinger principle, we deal with the “negative spectrum” (bound states) of related symmetric operators in L2.  相似文献   

17.
We consider a domain Ω in ?n of the form Ω = ?l × Ω′ with bounded Ω′ ? ?n?l. In Ω we study the Dirichlet initial and boundary value problem for the equation ? u + [(? ? ?… ? ?)m + (? ? ?… ? ?)m]u = fe?iωt. We show that resonances can occur if 2ml. In particular, the amplitude of u may increase like tα (α rational, 0<α<1) or like in t as t∞∞. Furthermore, we prove that the limiting amplitude principle holds in the remaining cases.  相似文献   

18.
Let ex2(n, K) be the maximum number of edges in a 2‐colorable K‐free 3‐graph (where K={123, 124, 134} ). The 2‐chromatic Turán density of K is $\pi_{2}({K}_{4}^-) =lim_{{n}\to \infty} {ex}_{2}({n}, {K}_{4}^-)/\left(_{3}^{n}\right)Let ex2(n, K) be the maximum number of edges in a 2‐colorable K‐free 3‐graph (where K={123, 124, 134} ). The 2‐chromatic Turán density of K is $\pi_{2}({K}_{4}^-) =lim_{{n}\to \infty} {ex}_{2}({n}, {K}_{4}^-)/\left(_{3}^{n}\right)$. We improve the previously best known lower and upper bounds of 0.25682 and 3/10?ε, respectively, by showing that This implies the following new upper bound for the Turán density of K In order to establish these results we use a combination of the properties of computer‐generated extremal 3‐graphs for small n and an argument based on “super‐saturation”. Our computer results determine the exact values of ex(n, K) for n≤19 and ex2(n, K) for n≤17, as well as the sets of extremal 3‐graphs for those n. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 105–114, 2010  相似文献   

19.
We consider the following semilinear wave equation: (1) for (t,x) ∈ ?t × ?. We prove that if the potential V(t,x) is a measurable function that satisfies the following decay assumption: V(t,x)∣?C(1+t)(1+∣x∣) for a.e. (t,x) ∈ ?t × ? where C, σ0>0 are real constants, then for any real number λ that satisfies there exists a real number ρ(f,g,λ)>0 such that the equation has a global solution provided that 0<ρ?ρ(f,g,λ). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The paper deals with sharp embeddings of the spaces B and F into rearrangement-variant spaces and related Hardy inequalities. Here (1/p, s) belongs to the interior of the shaded invariant spaces region in the Figure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号