首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of polystyrene‐b‐poly(methyl methacrylate) diblock copolymers with a luminescent ruthenium(II) tris(bipyridine) [Ru(bpy)3] complex at the block junction is described. The macroligand precursor, polystyrene bipyridine‐poly(methyl methacrylate) [bpy(PS–H)(PMMA)], was synthesized via the atom transfer radical polymerization of styrene and methyl methacrylate from two independent, sequentially activated initiating sites. Both polymerization steps resulted in the growth of blocks with sizes consistent with monomer loading and narrow molecular weight distributions (i.e., polydispersity index < 1.3). Subsequent reactions with ruthenium(II) bis(bipyridine) dichloride [Ru(bpy)2Cl2] in the presence of Ag+ generated the ruthenium tris(bipyridine)‐centered diblock, which is of interest for the imaging of block copolymer microstructures and for incorporation into new photonic materials. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4250–4255, 2002  相似文献   

2.
The luminescent complex [4‐(3‐hydroxypropyl)‐4′‐methyl‐2,2′‐bipyridine]‐bis(2,2′‐bipyridine)‐ruthenium(II)‐bis(hexafluoroantimonate) and its methacrylate derivative were successfully synthesized and fully characterized by two‐dimensional 1H and 13C{1H} NMR techniques [correlation spectroscopy (COSY) and heteronuclear multiple‐quantum coherence experiment (HMQC)], as well as matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. The respective labeled methyl methacrylate‐ruthenium(polypyridyl) copolymers were obtained by free‐radical copolymerization with methyl methacrylate and were characterized utilizing NMR, IR, and UV–visible spectroscopy and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3954–3964, 2003  相似文献   

3.
Two complementary tandem strategies based on the one‐pot combination of click chemistry and atom transfer radical polymerization (ATRP) are studied. Initially, functionalized random copolymers are obtained by copolymerization of methyl methacrylate and propargyl methacrylate simultaneously to the click chemistry coupling of a monofunctional azide. Then, an approach based on the copolymerization of methyl methacrylate and 11‐azido‐undecanoyl methacrylate simultaneously to the click chemistry coupling of a monofunctional alkyne is also investigated. For both the approach, polymerization and click chemistry coupling are catalyzed by CuBr and bipyridine (Bipy) in diphenylether at 90 °C. The [Bipy]/[CuBr] ratio is varied from 2 to 25 and the ratio of functionalized comonomer from 20 to 70 mol %. Both the tandem strategies proceed with good yields (50–80%) and allow a good control over the characteristics of the resulting random copolymers and macromolecular brushes (Mn ~ 15,000–40,000 g/mol and PDI ~ 1.3–2.0) as well as quantitative click functionalization as characterized by 1H NMR and size exclusion chromatography analyses. Although the click process is generally completed at the early stage of the process, the rate of polymerization depends on the amount of bipyridine involved. It was found that extending most of the polymerization process out of the click reaction regime results in a better control of the polymerization, preventing the significant occurrence of side reactions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3803–3813, 2009  相似文献   

4.
High‐throughput experimentation (HTE) was successfully applied in atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) for the rapid screening and optimization of different reaction conditions. A library of 108 different reactions was designed for this purpose, which used four different initiators [ethyl 2‐bromoisobutyrate, methyl 2‐bromopropionate, (1‐bromoethyl)benzene, and p‐toluenesulfonyl chloride], five metal salts (CuBr, CuCl, CuSCN, FeBr2, and FeCl2), and nine ligands (2,2′‐bipyridine and its derivatives). The optimal reaction conditions for Cu(I) halide, CuSCN, and Fe(II) halide‐mediated ATRP systems with 2,2′‐bipyridine and its 4,4′‐dialkyl‐substituted derivatives as ligands were determined. Cu(I)‐mediated systems were better controlled than Fe(II)‐mediated ones under the examined conditions. A bipyridine‐type ligand with a critical length of the substituted alkyl group (i.e., 4,4′‐dihexyl 2,2′‐bipyridine) exhibited the best performance in Cu(I)‐mediated systems, and p‐toluenesulfonyl chloride and ethyl 2‐bromoisobutyrate could effectively initiate Cu(I)‐mediated ATRP of MMA, resulting in polymers with low polydispersities in most cases. Besides, Cu(I) halide‐mediated ATRP with 4,5′‐dimethyl 2,2′‐bipyridine as the ligand and p‐toluenesulfonyl chloride as the initiator proved to be better controlled than those with 4,4′‐dimethyl 2,2′‐bipyridine as the ligand, and polymers with much lower polydispersities were obtained in the former cases. This successful HTE example opens up a way to significantly accelerate the development of new catalytic systems for ATRP and to improve the understanding of structure–property relationships of the reaction systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1876–1885, 2004  相似文献   

5.
Novel star‐shaped hard–soft triblock copolymers, 4‐arm poly(styrene)‐block‐poly [poly(ethylene glycol) methyl ethyl methacrylate]‐block‐poly{x‐[(4‐cyano‐4′‐biphenyl) oxy] alkyl methacrylate} (4PS‐PPEGMA‐PMAxLC) (x = 3, 10), with different mesogen spacer length are prepared by atom‐transfer radical polymerization. The star copolymers comprised three different parts: a hard polystyrene (PS) core to ensure the good mechanical property of the solid‐state polymer, and a soft, mobile poly[poly(ethylene glycol) methyl ethyl methacrylate] (PPEGMA) middle sphere responsible for the high ionic conductivity of the solid polyelectrolytes, and a poly{x‐[(4‐cyano‐4′‐biphenyl)oxy]alkyl methacrylate} with a birefringent mesogens at the end of each arm to tuning the electrolytes morphology. The star‐shaped hard–soft block copolymers fusing hard PS core with soft PPEGMA segment can form a flexible and transparent film with dimensional stability. Thermal annealing from the liquid crystalline states allows the cyanobiphenyl mesogens to induce a good assembly of hard and soft blocks, consequently obtaining uniform nanoscale microphase separation morphology, and the longer spacer is more helpful than the shorter one. There the ionic conductivity has been improved greatly by the orderly continuous channel for efficient ion transportation, especially at the elevated temperature. The copolymer 4PS‐PPEGMA‐PMA10LC shows ionic conductivity value of 1.3 × 10?4 S cm?1 (25 °C) after annealed from liquid crystal state, which is higher than that of 4PS‐PPEGMA electrolyte without mesogen groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4341–4350  相似文献   

6.
Copolymerization of acrylonitrile and ethyl methacrylate using atom transfer radical polymerization (ATRP) at ambient temperature was carried out under optimized reaction conditions using 2‐bromopropionitrile as initiator and CuBr/2,2′‐bipyridine as the catalyst system. The copolymer composition, obtained from 1H NMR spectra, were used to determine the monomer reactivity ratios (rA = 0.68 and rE = 1.75) involved in ATRP. Two‐dimensional NMR (heteronuclear single quantum correlation and total correlated spectroscopy) experiments were employed to resolve the highly overlapping and complex 1H and 13C{1H} NMR spectra of copolymers. The complete spectral assignments of the quaternary carbons viz. carbonyl and nitrile carbons were done with the help of heteronuclear multiple bond correlation spectra. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2955–2971, 2006  相似文献   

7.
Poly(ethylene‐g‐styrene) and poly(ethylene‐g‐methyl methacrylate) graft copolymers were prepared by atom transfer radical polymerization (ATRP). Commercially available poly(ethylene‐co‐glycidyl methacrylate) was converted into ATRP macroinitiators by reaction with chloroacetic acid and 2‐bromoisobutyric acid, respectively, and the pendant‐functionalized polyolefins were used to initiate the ATRP of styrene and methyl methacrylate. In both cases, incorporation of the vinyl monomer into the graft copolymer increased with extent of the reaction. The controlled growth of the side chains was proved in the case of poly(ethylene‐g‐styrene) by the linear increase of molecular weight with conversion and low polydispersity (Mw /Mn < 1.4) of the cleaved polystyrene grafts. Both macroinitiators and graft copolymers were characterized by 1H NMR and differential scanning calorimetry. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2440–2448, 2000  相似文献   

8.
The synthesis of polymer‐matrix‐compatible amphiphilic gold (Au) nanoparticles with well‐defined triblock polymer poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] and diblock polymers poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], polystyrene‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], and poly(t‐butyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] in water and in aqueous tetrahydrofuran (tetrahydrofuran/H2O = 20:1 v/v) at room temperature is reported. All these amphiphilic block copolymers were synthesized with atom transfer radical polymerization. The variations of the position of the plasmon resonance band and the core diameter of such block copolymer functionalized Au particles with the variation of the surface functionality, solvent, and molecular weight of the hydrophobic and hydrophilic parts of the block copolymers were systematically studied. Different types of polymer–Au nanocomposite films [poly(methyl methacrylate)–Au, poly(t‐butyl methacrylate)–Au, polystyrene–Au, poly(vinyl alcohol)–Au, and poly(vinyl pyrrolidone)–Au] were prepared through the blending of appropriate functionalized Au nanoparticles with the respective polymer matrices {e.g., blending poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate‐stabilized Au with the poly(methyl methacrylate)matrix only}. The compatibility of specific block copolymer modified Au nanoparticles with a specific homopolymer matrix was determined by a combination of ultraviolet–visible spectroscopy, transmission electron microscopy, and differential scanning calorimetry analyses. The facile formation of polymer–Au nanocomposites with a specific block copolymer stabilized Au particle was attributed to the good compatibility of block copolymer coated Au particles with a specific polymer matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1841–1854, 2006  相似文献   

9.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

10.
High‐capacity microcellular monoliths were prepared by a two‐step process, including the synthesis of a bromoester‐functionalized scaffold by the copolymerization of a highly concentrated emulsion and an in situ surface polymerization of methyl methacrylate with atom transfer radical polymerization. The influence of various parameters, such as the feed ratio, the concentration of immobilized bromoester groups, and the presence of a spacer group on the poly(methyl methacrylate) loading, was studied. Monoliths with capacities of up to 7 mmol g?1 were obtained. Thermogravimetric analyses, scanning electron microscopy experiments, and mercury intrusion porosimetry measurements were used for the characterization of the final materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1216–1226, 2004  相似文献   

11.
Maleic anhydride (MAn) was grafted onto the low molecular weight esters methyl decanoate (MD) and methyl 2‐ethylhexanoate (MEH) using the free‐radical initiators Lupersol‐101 and ‐130; the esters were used as model compounds for the copolymer poly(ethylene‐co‐methyl acrylate). The grafted products in both cases were isolated from the unreacted ester and were subjected to extensive analysis using spectroscopic and chromatographic techniques. Analysis of the grafted material indicated the presence of one or more succinic anhydride (SAn) residues grafted to the ester. In the case of the multiply grafted material it has been established conclusively by 13C‐NMR using 2,3‐13C2 labeled MAn that the multiple grafts exist as single units. A limited number of grafting experiments was performed on the copolymer in the melt and the graft‐modified copolymer was characterized spectroscopically. Single graft units were observed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1609–1618, 1999  相似文献   

12.
Copper(I)‐mediated living radical polymerization was used to synthesize amphiphilic block copolymers of poly(n‐butyl methacrylate) [P(n‐BMA)] and poly[(2‐dimethylamino)ethyl methacrylate] (PDMAEMA). Functionalized bromo P(n‐BMA) macroinitiators were prepared from monofunctional, difunctional, and trifunctional initiators: 2‐bromo‐2‐methylpropionic acid 4‐methoxyphenyl ester, 1,4‐(2′‐bromo‐2′‐methyl‐propionate)benzene, and 1,3,5‐(2′‐bromo‐2′‐methylpropionato)benzene. The living nature of the polymerizations involved was investigated in each case, leading to narrow‐polydispersity polymers for which the number‐average molecular weight increased fairly linearly with time with good first‐order kinetics in the monomer. These macroinitiators were subsequently used for the polymerization of (2‐dimethylamino)ethyl methacrylate to obtain well‐defined [P(n‐BMA)xb‐PDMAEMAy]z diblock (15,900; polydispersity index = 1.60), triblock (23,200; polydispersity index = 1.24), and star block copolymers (50,700; polydispersity index = 1.46). Amphiphilic block copolymers contained between 60 and 80 mol % hydrophilic PDMAEMA blocks to solubilize them in water. The polymers were quaternized with methyl iodide to render them even more hydrophilic. The aggregation behavior of these copolymers was investigated with fluorescence spectroscopy and dynamic light scattering. For blocks of similar comonomer compositions, the apparent critical aggregation concentration (cac = 3.22–7.13 × 10?3 g L?1) and the aggregate size (ca. 65 nm) were both dependent on the copolymer architecture. However, for the same copolymer structure, increasing the hydrophilic PDMAEMA block length had little effect on the cac but resulted in a change in the aggregate size. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 439–450, 2002; DOI 10.1002/pola.10122  相似文献   

13.
ABCBA‐type pentablock copolymers of methyl methacrylate (MMA), styrene (S), and isobutylene (IB) were prepared by a three‐step synthesis, which included atom transfer radical polymerization (ATRP) and cationic polymerization: (1) poly(methyl methacrylate) (PMMA) with terminal chlorine atoms was prepared by ATRP initiated with an aromatic difunctional initiator bearing two trichloromethyl groups under CuCl/2,2′‐bipyridine catalysis; (2) PMMA with the same catalyst was used for ATRP of styrene, which produced a poly(S‐b‐MMA‐b‐S) triblock copolymer; and (3) IB was polymerized cationically in the presence of the aforementioned triblock copolymer and BCl3, and this produced a poly(IB‐b‐S‐b‐MMA‐b‐S‐b‐IB) pentablock copolymer. The reaction temperature, varied from ?78 to ?25 °C, significantly affected the IB content in the product; the highest was obtained at ?25 °C. The formation of a pentablock copolymer with a narrow molecular weight distribution provided direct evidence of the presence of active chlorine at the ends of the poly(S‐b‐MMA‐b‐S) triblock copolymer, capable of the initiation of the cationic polymerization of IB in the presence of BCl3. A differential scanning calorimetry trace of the pentablock copolymer (20.1 mol % IB) showed the glass‐transition temperatures of three segregated domains, that is, polyisobutylene (?87.4 °C), polystyrene (95.6 °C), and PMMA (103.7 °C) blocks. One glass‐transition temperature (104.5 °C) was observed for the aforementioned triblock copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6098–6108, 2004  相似文献   

14.
Heteroarm H‐shaped terpolymers, (polystyrene)(poly(methyl methacrylate))‐ poly(tert‐butyl acrylate)‐(polystyrene)(poly(methyl methacrylate)), (PS)(PMMA)‐PtBA‐(PMMA)(PS), and, (PS)(PMMA)‐poly(ethylene glycol)(PEG)‐(PMMA)(PS), through click reaction strategy between PS‐PMMA copolymer (as side chains) with an alkyne functional group at the junction point and diazide end‐functionalized PtBA or PEG (as a main chain). PS‐PMMA with alkyne functional group was prepared by sequential living radical polymerizations such as the nitroxide mediated (NMP) and the metal mediated‐living radical polymerization (ATRP) routes. The obtained H‐shaped polymers were characterized by using 1H‐NMR, GPC, DSC, and AFM measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1055–1065, 2007  相似文献   

15.
An azido‐containing functional monomer, 11‐azido‐undecanoyl methacrylate, was successfully polymerized via ambient temperature single electron transfer initiation and propagation through the reversible addition–fragmentation chain transfer (SET‐RAFT) method. The polymerization behavior possessed the characteristics of “living”/controlled radical polymerization. The kinetic plot was first order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn ≤ 1.22). The complete retention of azido group of the resulting polymer was confirmed by 1H NMR and FTIR analysis. Retention of chain functionality was confirmed by chain extension with methyl methacrylate to yield a diblock copolymer. Furthermore, the side‐chain functionalized polymer could be prepared by one‐pot/one‐step technique, which is combination of SET‐RAFT and “click chemistry” methods. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) with n‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 376–381  相似文献   

17.
The atom transfer radical polymerization of octadecyl acrylate (ODA) has been investigated and optimized to produce polymers with predetermined molecular weights and narrow polydispersities (<1.2). The poor solubility of the catalytic system formed with conventional ligands such as the N‐(n‐propyl)‐2‐pyridylmethanimine and 2,2′‐bipyridine with Cu(I)Br in nonpolar reaction conditions gave poor control over molecular weight characteristics in ODA polymerizations. The use of N‐(n‐octyl)‐2‐pyridylmethanimine in combination with Cu(I)Br yielded a more soluble catalyst that improved control over the polymerization. The products from the polymerizations were further improved when an initiator, octadecyl 2‐bromo‐2‐methyl‐propanoate, similar in structure to the monomer, was used. Together, these modifications produced polymerizations that showed true controlled character as well as products with predetermined molecular weights and narrow polydispersities. Diblock copolymers of PODA were prepared with methyl methacrylate (MMA) and olig(oethylene glycol) methyl ether methacrylate (OEGMA). The PODA‐block‐POEGMA copolymers are the first examples of all comblike amphiphilic block copolymers. One of PODA‐block‐POEGMA copolymer samples has been shown to self‐assemble as micelles in a dilute aqueous solution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1129–1143, 2005  相似文献   

18.
Commercial poly(vinyl chloride) (PVC) contains allyl chloride and tertiary chloride groups as structural defects. This article reports the use of the active chloride groups from the structural defects of PVC as initiators for the metal‐catalyzed living radical graft copolymerization of PVC. The following monomers were investigated in graft copolymerization experiments: methyl methacrylate, butyl methacrylate, tert‐butyl methacrylate, butyl acrylate, methacrylonitrile, acrylonitrile, styrene, 4‐chloro‐styrene, 4‐methyl‐styrene, and isobornylmethacrylate. Cu(0)/bpy, CuCl/bpy, CuBr/bpy, Cu2O/bpy, Cu2S/bpy, and Cu2Se/bpy (where bpy = 2,2′‐bipyridine) were used as catalysts. Living radical polymerizations initiated from 1‐chloro‐3‐methyl‐2‐butene, allyl bromide, and 1,4‐dichloro‐2‐butene as models for the allyl chloride structural defects and from 3‐chloro‐3‐methyl‐pentane and 1,3‐dichloro‐3‐methylbutane as models for the tertiary chloride defects were studied. Graft copolymerization experiments were accessible in solution, in a swollen state, and in bulk. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1120–1135, 2001  相似文献   

19.
Fluoroalkyl methacrylates, 2,2,2‐trifluoroethyl methacrylate ( 1 ), hexafluoroisopropyl methacrylate ( 2 ), 1,1,1,3,3,3‐hexafluoro‐2‐methyl‐2‐propyl methacrylate ( 3 ), and perfluoro t‐butyl methacrylate ( 4 ) were synthesized. Homopolymers and copolymers of these fluoroalkyl methacrylates with methyl methacrylate (MMA) were prepared and characterized. With the exception of the copolymers of MMA and 2,2,2‐trifluoroethyl methacrylate ( 1 ), the glass transition temperatures (Tgs) of the copolymers were found to deviate positively from the Gordon‐Taylor equation. The positive deviation from the Gordon‐Taylor equation could be accounted for by the dipole–dipole intrachain interaction between the methyl ester group and the fluoroalkyl ester group of the monomer units. These Tg values of the copolymers were found to fit with the Schneider equation. The fitting parameters in the Schneider equation were calculated, and R2 values, the coefficients of determination, were almost 1.0. The refractive indices of the copolymers, measured at 532, 633, and 839 nm wavelengths, were lower than that of PMMA and showed a linear relationship with monomer composition in the copolymers. 2 and MMA have a tendency to polymerize in an alternating uniform monomer composition, resulting in less light scattering. This result suggests that the copolymer prepared with an equal molar ratio of 2 and MMA may have useful properties with applications in optical devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4748–4755, 2008  相似文献   

20.
The synthesis of two types of isocyanate side chain containing copolymers, poly(methyl methacrylate‐co‐isocyanatoethyl methacrylate) (P(MMA‐co‐IEM)) and poly(benzyl methacrylate‐co‐isocyanatoethyl methacrylate) (P(BnMA‐co‐IEM)), which were synthesized by Cu(0)‐mediated radical polymerization, is reported. Polymerization proceeded to high conversion giving polymers of relatively narrow molar mass distributions. The incorporation of the bulky aromatic groups in the latter copolymer rendered it sufficiently stable toward hydrolysis and enabled the isolation of the product and its characterization by 1H and 13C NMR, and FTIR spectroscopy and SEC. Both P(MMA‐co‐IEM) and P(BnMA‐co‐IEM) were functionalized with dibutylamine, octylamine, and (R)‐(+)‐α‐methylbenzyl‐amine, which further proved the successful incorporation of the isocyanate groups. Furthermore, P(BnMA‐co‐IEM) was used for the fabrication of liquid core microcapsules via oil‐in‐water interfacial polymerization with diethylenetriamine as crosslinker. The particles obtained were in the size range of 10–90 µm in diameter independent of the composition of copolymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2698–2705  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号