首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copoly(ethylene terephthalate‐imide)s (PETIs) were synthesized by the melt copolycondensation of bis(2‐hydroxyethyl)terephthalate with a new imide monomer, N,N′‐bis[p‐(2‐hydroxyethoxycarbonyl)phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BHEI). The copolymers were characterized by intrinsic viscosity, Fourier transform infrared, 1H NMR, differential scanning calorimetry, and thermogravimetric analysis techniques. Although their crystallinities decreased as the content of BHEI units increased, the glass‐transition temperatures (Tg) increased significantly. When 5 or 10 mol % BHEI units were incorporated into poly(ethylene terephthalate), Tg increased by 10 or 24 °C, respectively. The thermal stabilities of PETI copolymers were about the same as the thermal stability of PET, whereas the weight loss of PETIs decreased as the content of BHEI units increased. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 408–415, 2001  相似文献   

2.
Telechelic hydroxylated poly(3‐hydroxybutyrate) (PHB‐diol) oligomers have been successfully synthesized in 90–95% yield from high molar mass PHB by tin‐catalyzed alcoholysis with different diols (mainly 1,4‐butanediol) in diglyme. The PHB‐diol oligomers structure was studied by nuclear magnetic resonance, Fourier transformed infrared spectroscopy MALDI‐ToF MS, and size exclusion chromatography, whereas their crystalline structures, thermal properties and thermal stability were analyzed by wide angle X‐ray scattering, DSC, and thermogravimetric analyses. The kinetic of the alcoholysis was studied and the influence of (i) the catalyst amount, (ii) the diol amount, (iii) the reaction temperature, and (iv) the diol chain length on the molar mass was discussed. The influence of the PHB‐diol molar mass on the thermal stability, the thermal properties and optical properties was investigated. Then, tin‐catalyzed poly(ester‐ether‐urethane)s (PEEU) of Mn = 15,000–20,000 g/mol were synthesized in 1,2‐dichloroethane from PHB‐diol oligomers (Pester) with modified 4,4'‐MDI and different polyether‐diols (Pether) (PEG‐2000, PEG‐4000, and PPG‐PEG‐PPG). The influence of the PHB‐diol chain length, the Pether/Pester ratio, the polyether segment nature and the PEG chain length on the thermal properties and crystalline structures of PEEUs was particularly discussed. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1949–1961  相似文献   

3.
4.
A series of novel optically active poly(ester‐imide)s (ter‐PEIs) with high glass transition temperature (Tg), good thermal stability, and solubility were successfully designed and synthesized by direct polycondensation reactions, using p‐hydroxybenzoic acid (PHB), 4,4’‐dihydroxybenzophenone, and a chiral diacid, N,N'‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid as monomers. The resulting terpolymers were characterized by1H‐NMR, FTIR, element analysis, thermogravimetric analysis, different scanning calorimeter and wide‐angle x‐ray diffraction, etc. The ter‐PEIs are amorphous polymers with good heat resistance and high Tgs. They are soluble in many common polar organic solvents and show optically rotation property. The specific rotation values of the ter‐PEIs increase with the molar ratio of the chiral diacid, and the rigid PHB monomer is beneficial to increase the Tgs of the polymers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The physical and mechanical properties of aliphatic homopolyesters from monomers obtainable from renewable resources, namely, 1,3‐propanediol and succinic acid, were improved by their combination with aromatic urethane segments capable of establishing strong intermolecular hydrogen bonds. Segmented poly(ester‐urethane)s were synthesized from dihydroxy‐terminated oligo(propylene succinate)s chain‐extended with 4,4′‐diisophenylmethane diisocyanate. The newly synthesized materials were exhaustively characterized by 1H NMR spectroscopy, size exclusion chromatography, differential scanning calorimetry, dynamic mechanical analysis, and with respect to their main static mechanical properties, an Instron apparatus was used. The average repeat number of the hard segments, evaluated by NMR, ranged from 4 to 9, whereas that of the flexible segments was about 14. The degree of crystallinity, glass‐transition temperature, melting point, tensile strength, elongation, and Young's modulus were influenced by the ratio between hard and soft segments of the segmented copolymer in a predictable way. The results demonstrated that poly(ester‐urethane)s from 1,3‐propanediol and succinic acid are promising thermoplastics. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 630–639, 2001  相似文献   

6.
An unsymmetrical and noncoplanar heterocyclic dianhydride was synthesized from a bisphenol‐like phthalazinone, 4‐(4‐hydroxylphenyl)‐2,3‐phthalazin‐1‐one, and a series of novel poly(ether imide)s based on it, with intrinsic viscosities of 0.67–1.42 dL/g, were obtained by one‐step solution polymerization in m‐cresol at 200 °C for 20 h. The polymers were readily soluble in N‐methyl‐2‐pyrrolidinone and m‐cresol. The poly(ether imide)s derived from 4,4′‐oxydianiline and 4,4′‐methylenedianiline were also very soluble in chloroform, 1,1′,2,2′‐tetrachloroethane, and N,N‐dimethylacetamide. The glass‐transition temperatures were 289–326 °C, as determined by differential scanning calorimetry. All the degradation temperatures for 5% weight loss occurred above 482 °C in nitrogen. The tensile strength of thin films of some of the polymers varied from 103.1 to 121.4 MPa. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6089–6097, 2004  相似文献   

7.
4,4′‐hexafluoroisopropylidene‐2,2‐bis‐(phthalic acid anhydride) (1) was reacted with L ‐methionine (2) in acetic acid and the resulting N,N′–(4,4′‐hexafluoroisopropylidenediphthaloyl)‐bis‐L ‐methionine (4) was obtained in high yield. The direct polycondensation reaction of this diacid with several aromatic diols such as bisphenol A (5a), phenolphthalein (5b), 1,4‐dihydroxybenzene (5c), 4,4′‐dihydroxydiphenyl sulfide (5d), 4,6‐dihydroxypyrimidine (5e), 4,4′‐dihydroxydiphenyl sulfone (5f) and 2,4′‐dihydroxyacetophenone (5g) was carried out in a system of thionyl chloride and pyridine. Expecting that the reaction with thionyl chloride in pyridine might involve alternative intermediates different from an acyl chloride, the polycondensation at a higher temperature favorable for the reaction of the expected intermediate with nucleophiles was attempted, and a highly thermally stable poly(ester‐imide) was obtained by carrying out the reaction at 80°C. All of the above polymers were fully characterized by 1H‐NMR, 19F‐NMR FT‐IR spectroscopy, elemental analysis and specific rotation. Some structural characterization and physical properties of these optically active poly(ester‐ imide)s are reported. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A novel phosphorus–nitrogen thermotropic liquid crystalline poly(ester‐imide) (PN‐TLCP) derived from p‐acetoxybenzoic acid (ABA), terephthalic acid (TPA), acetylated 2‐(6‐oxide‐6H‐dibenz<c,e><1,2>oxa phosphorin‐ 6‐yl)‐1,4‐dihydroxy phenylene (DOPO‐AHQ) and N,N'‐hexane‐1,6‐diylbis(trimellitimide) was prepared by melt transesterification. The chemical structure, the mesophase behavior, and the thermal properties of the copolymer were investigated with Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), elemental analysis, wide‐angle X‐ray diffraction (WAXD), hot‐stage polarized light microscopy (PLM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). PN‐TLCP exhibited a nematic mesophase with a strong birefringence at a low and broad mesomorphic temperature ranging from 220 to 350°C, an initial flow temperature as low as about 190°C and a glass transition temperature of about 160°C. PN‐TLCP has also good thermal stability, high char residues and excellent flame retardancy (limiting oxygen index, LOI = 71 and UL‐94 V‐0 rating). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Nylon 6 was reacted with trimellitic anhydride (TMA) at 230 °C so that a complete degradation to N‐(5‐carboxy‐pentamethylene) trimellitimide was obtained. The crude imide dicarboxylic acid was reacted in situ with 4,4′‐bisacetoxy biphenyl whereby an enantiotropic smectic polyesterimide was obtained. Analogous degradation and polycondensation reactions were also performed with nylon 11 and nylon 12. Parallel syntheses were conducted with isolated imide dicarboxylic acids. Furthermore, the crude imide dicarboxylic acid obtained from nylons 6, 11, and 12 were polycondensed in situ with diacetates of hydroquinone or substituted hydroquinone in combination with various amounts of acetoxy benzoic acid or 6‐acetoxy‐2‐naphthoic acid. In this way enantiotropic nematic copoly(ester‐imide)s were prepared. The phase transition of all LC‐poly(ester‐imide)s were characterized by DSC measurement and optical microscopy. In addition, a series of isotropic poly(ester‐imides)s was prepared using nonmesogenic bisphenols, such as bisphenol A, as comonomers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1630–1638, 2000  相似文献   

10.
A new adamantane‐based bis(ether anhydride), 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]adamantane dianhydride, was prepared in three steps starting from nitrodisplacement of 4‐nitrophthalonitrile with the potassium phenolate of 2,2‐bis(4‐hydroxyphenyl)adamantane. A series of adamantane‐containing poly(ether imide)s were prepared from the adamantane‐based bis(ether anhydride) and aromatic diamines by a conventional two‐stage synthesis in which the poly(ether amic acid)s obtained in the first stage were heated stage‐by‐stage at 150–270°C to give the poly(ether imide)s. The intermediate poly(ether amic acid)s had inherent viscosities between 0.56 and 1.92 dL/g. Except for those from p‐phenylenediamine, m‐phenylenediamine, and benzidine, all the poly(ether amic acid) films could be thermally converted into transparent, flexible, and tough poly(ether imide) films. All the poly(ether imide)s showed limited solubility in organic solvents, although they were amorphous in nature as evidenced by X‐ray diffractograms. Glass transition temperatures of these poly(ether imide)s were recorded in the range of 242–317°C by differential scanning calorimetry and of 270–322°C by dynamic mechanical analysis. They exhibited high resistance to thermal degrdation, with 10% weight loss temperatures being recorded between 514–538°C in nitrogen and 511–527°C in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1619–1628, 1999  相似文献   

11.
The synthesis and characterization of a series of novel poly(aryl amide imide)s based on diphenyltrimellitic anhydride are described. The poly(aryl amide imide)s, having inherent viscosities of 0.39–1.43 dL/g in N-methyl-2-pyrrolidinone at 30°C, were prepared by polymerization with aromatic diamines in N,N-dimethylacetamide and subsequent chemical imidization. All the polymers were amorphous, readily soluble in aprotic polar solvents such as DMAC, NMP, dimethylsulfoxide, N,N-dimethylformamide, and m-cresol, and could be cast to form flexible and tough films. The glass transition temperatures were in the range of 284–366°C, and the temperatures for 5% weight loss in nitrogen were above 468°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4541–4545, 1999  相似文献   

12.
A series of poly(amide–imide)s IIIa–m containing flexible isopropylidene and ether groups in the backbone were synthesized by the direct polycondensation of 4,4′‐[1,4‐phenylenebis(isopropylidene‐1,4‐phenyleneoxy)]dianiline (PIDA) with various bis(trimellitimide)s IIa–m in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. The resulting poly(amide–imide)s had inherent viscosities in the range of 0.80–1.36 dL/g. Except for those from the bis(trimellitimide)s of p‐phenylenediamine and benzidine, all the polymers could be cast from DMAc into transparent and tough films. They exhibited excellent solubility in polar solvents. The 10% weight loss temperatures of the polymers in air and in nitrogen were all above 495°C, and their Tg values were in the range of 201–252°C. Some properties of poly(amide–imide)s III were compared with those of the corresponding poly(amide–imide)s V prepared from the bis(trimellitimide) of diamine PIDA and various aromatic diamines. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 69–76, 1999  相似文献   

13.
Novel thermoplastic elastomers based on multi‐block copolymers of poly(l ‐lysine) (PLL), poly(N‐ε‐carbobenzyloxyl‐l ‐lysine) (PZLL), poly(ε‐caprolactone) (PCL), and poly(ethylene glycol) (PEG) were synthesized by combination of ring‐opening polymerization (ROP) and chain extension via l ‐lysine diisocyanate (LDI). SEC and 1H NMR were used to characterize the multi‐block copolymers, with number‐average molecular weights between 38,900 and 73,400 g/mol. Multi‐block copolymers were proved to be good thermoplastic elastomers with Young's modulus between 5 and 60 MPa and tensile strain up to 1300%. The PLL‐containing multi‐block copolymers were electrospun into non‐woven mats that exhibited high surface hydrophilicity and wettability. The polypeptide–polyester materials were biocompatible, bio‐based and environment‐friendly for promising wide applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3012–3018  相似文献   

14.
A set of poly(urethane‐imide)s were prepared using blocked Polyurethane (PU) prepolymer and pyromellitic dianhydride (PMDA). The PU prepolymer was prepared by the reaction of polyether glycol and 2,4‐tolylene diisocyanate, and end capped with N‐methyl aniline. The PU prepolymer was reacted with PMDA until the evolution of carbon dioxide ceased. The effect of tertiary amine catalysts, organo tin catalysts, solvents, and reaction temperature were studied and compared with the poly(urethane‐imide) prepared using phenol‐blocked PU prepolymer. N‐methyl aniline blocked PU prepolymer gave a higher molecular weight poly(urethane‐imide) at a lower reaction temperature in a shorter time. Amine catalysts were found to be more efficient than organo tin catalysts. The reaction was favorable in particular with N‐ethylmorpholine and diazabicyclo(2.2.2)octane (DABCO) as catalysts, and dimethylpropylene urea as a reaction medium. The poly(urethane‐imide)s were characterized by FTIR, GPC, TGA, and DSC analyses. The molecular weight decreased with an increase in reaction temperature. The thermal stability of the PU was found to increase by the introduction of imide component. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4032–4037, 2000  相似文献   

15.
16.
A novel positive‐working and aqueous‐base‐developable photosensitive poly(imide benzoxazole) precursor based on a poly(amic acid hydroxyamide) bearing phenolic hydroxyl groups and carboxylic acid groups, a diazonaphthoquinone (DNQ) photosensitive compound, and a solvent was developed. Poly(amic acid hydroxyamide) was prepared through the polymerization of 2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluoropropane, trimellitic anhydride chloride, and 4,4′‐oxydibenzoyl chloride. Subsequently, the thermal cyclization of the poly(amic acid hydroxyamide) precursor at 350 °C produced the corresponding poly(imide benzoxazole). The inherent viscosity of the precursor polymer was 0.17 dL/g. The cyclized poly(imide benzoxazole) showed a high glass‐transition temperature of 372 °C and 5% weight loss temperatures of 535 °C in nitrogen and 509 °C in air. The structures of the precursor polymer and the fully cyclized polymer were characterized with Fourier transform infrared and 1H NMR. The photosensitive polyimide precursor containing 25 wt % DNQ photoactive compound showed a sensitivity of 256 mJ/cm2 and a contrast of 1.14 in a 3‐μm film with a 0.6 wt % tetramethylammonium hydroxide developer. A pattern with a resolution of 5 μm was obtained from this composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5990–5998, 2004  相似文献   

17.
A new series of polyimides was synthesized by the condensation of monomers (azomethine‐ether diamine, DA‐1 and DA‐2) with pyromelliticdianhydride (PMDA), 3,4,9,10‐perylenetetracarboxylic dianhydride (PD) and 3,3′4,4′‐benzophenonetetracarboxylic dianhydride (BD). The structural explications of monomers and polyimides was conducted by FT‐IR, 1H NMR and elemental analysis. All polyimides were found soluble in polar aprotic solvents and found to be semicrystalline in nature confirmed by XRD. The inherent viscosities were found in the range of 0.67–0.77 g/dl. %. Average molecular weight (MW) and number average molecular weight (Mn) of the polyimides were found in the range of 5.72 × 105 g/mol–6.58 × 105 g/mol and 3.79 × 105 g/mol 4.11 × 105 g/mol respectively. The polyimides exhibited excellent thermal properties having a glass transition temperature Tg in the range of 230–290°C and the 10% weight loss temperature was above 450°C. The values of thermodynamic parameters, activation energy, enthalpy and entropy fall in the range of 45.2–53.90 kJ/mol, 43.5–52.30 kJ/mol and 0.217 kJ/mol k to 0.261 kJ/mol k respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A series of poly(amide‐imide)s were prepared using a new monomer, 1,3‐bis(trimellitimido)‐2,4,6‐trimethyl benzene (BTB), with four different diamines: 1,4‐phenylene diamine (PDA), 2,4‐diamino mesitylene (DAM), 2,2′‐dimethyl‐4,4′‐diamino biphenyl (DMDB), and 2,2′‐bis(trifluoromethyl)‐4,4′‐diamino biphenyl (TFDB). They were prepared by the condensation method in N‐methyl‐2‐pyrrolidinone (NMP) solvent using triphenyl phosphate and pyridine as condensing agents. The synthesized poly(amide‐imide)s were characterized by Fourier transform infrared and 1H NMR techniques. Films were prepared and characterized using DSC, thermogravimetric analysis (TGA), a prism coupler, and a film dielectric property analyzer. DSC measurement showed that the glass‐transition temperatures of the polymers were in the range of 259–327 °C. TGA analysis showed 5% weight loss, in the range of 472–514 °C. The refractive index varied from 1.6004 to 1.6586 in the following increasing order: BTB‐TFBM < BTB‐DAM < BTB‐DMDB < BTB‐PDA. For the poly(amide‐imide) films, the birefringence varied in the range of 0.0319–0.0580, in the following increasing order: BTB‐DAM < BTB‐TFBM < BTB‐DMDB < BTB‐PDA. The capacitance method showed that the dielectric constant of poly(amide‐imide) varied with the diamine structure; no difference was found by the optical method. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 137–143, 2004  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号