首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Model samples of the interface of an adhesive joint containing small levels of aminopropyl triethoxysilane (APS) have been prepared in order to examine the interface formed with an aluminium substrate. X‐ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF‐SIMS) have been used to analyse and image the interface region in between the aluminium and an epoxy adhesive in order to ascertain the reactions by the organosilane which is present as a minor component within the system. It was found that APS was present at the interface between the adhesive and the substrate and that it had reacted with the substrate forming a covalent bond and was also crosslinked within the adhesive. Evidence of near to full hydrolysis of APS is also present within the spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The time‐dependent oscillatory growth mechanism of organosilane film self‐assembly on aluminium oxide has been investigated using X‐ray photoelectron spectroscopy. While this unusual oscillatory process has been reported for the trifunctional silane, propyltrimethoxysilane, we report here, for the first time, that this oscillatory behaviour is also present during the self‐assembly of the difunctional silane propylmethyldimethoxysilane. The presence of multiple oscillations in this growth mechanism is also first reported for propyltrimethoxysilane and propylmethyldimethoxysilane as a function of exposure time. Multiple oscillations indicate that the 3‐component model that is used to describe and fit a single coverage oscillation must be reconsidered and contain additional components to account for the multiple oscillations seen experimentally. The absence of such oscillatory behaviour in the growth of the monofunctional organosilane propyldimethylmethoxysilane, which in fact follows a Langmuir‐type growth mechanism, indicates that this measurable oscillatory behaviour is because of the ability of multifunctional silanes to oligomerise both on the substrate and in solution.  相似文献   

3.
An important aspect of the robustness of an electronic device is its ability to resist water, fingerprints, dirt, and smudges that may compromise its ability to function and/or the information within it. Here, we report a chemical analysis by ToF‐SIMS, wetting, and XPS of the surfaces in a commercially available Apple iPod nano (8GB, MC525LL/A), which showed good resistance to its environment. This analysis reveals that the front panel (touchscreen) of the device is coated with a low free energy fluorinated polymer that may consist of short segments of a fluorinated hydrocarbon connected through ether linkages. No other part of the device appears to have this hydrophobic coating. A plasma treatment of the device leads to a deterioration of its performance. This work demonstrates how different analytical techniques can complement each other and contribute to a better understanding of a surface or a material. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This report provides detailed experimental results of thermal and surface characterization on untreated and surface‐treated halloysite nanotubes (HNTs) obtained from two geographic areas. Surface characterization techniques, including XPS and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) were used. ToF‐SIMS surface analysis experiments were performed with both atomic and cluster ion beams. Higher ion yields and more high‐mass ions were obtained with the cluster ion beams. Static ToF‐SIMS spectra were analyzed with principal component analysis (PCA). Morphological diversities were observed in the samples although they mainly contained tubular structures. Thermogravimetric data indicated that aqueous hydrogen peroxide solution could remove inorganic salt impurities, such as alkali metal salts. The amount of grafting of benzalkonium chloride of HNT surface was determined by thermogravimetic analysis. PCA of ToF‐SIMS spectra could distinguish the samples mined from different geographical locations as well as among surface‐treated and untreated samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Poly(styrene) (PS), poly(2,3,4,5,6‐pentafluorostyrene) (5FPS) and their random copolymers were prepared by bulk radical polymerization. The spin‐cast polymer films of these polymers were analyzed using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The surface and bulk compositions of these copolymers were found to be same, implying that surface segregation did not occur. The detailed analysis of ToF‐SIMS spectra indicated that the ion fragmentation mechanism is similar for both PS and 5FPS. ToF‐SIMS quantitative analysis using absolute peak intensity showed that the SIMS intensities of positive styrene fragments, particularly C7H7+, in the copolymers are higher than the intensities expected from a linear combination of PS and 5FPS, while the SIMS intensities of positive pentafluorostyrene fragments are smaller than expected. These results indicated the presence of matrix effects in ion formation process. However, the quantitative approach using relative peak intensity showed that ion intensity ratios are linearly proportional to the copolymer mole ratio when the characteristic ions of PS and 5FPS are selected. This suggests that quantitative analysis is still possible in this copolymer system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A series of low‐density polyethylene (LDPE) surfaces, chemically modified using a number of oxidative techniques employed for adhesion enhancement (pretreatments), have been studied by time‐of‐flight (ToF) SIMS and XPS. The methods consisted of corona discharge, flame, electrochemical, chromic acid, acid dichromate and acid permanganate treatment. All except flame treatment were performed under mild and fairly severe conditions to yield a range of surface chemistries. The XPS analysis, using high energy resolution and a refined approach to C 1s curve‐fitting, provided some new insights into the quantitative assessment of the type and concentration of functional groups. Both positive and negative ion ToF‐SIMS spectra were obtained at high mass resolution. The oxygen‐containing fragments were identified by accurate mass analysis and subjected to a detailed comparison with the XPS results. No convincing relative intensity correlations could be identified that would allow particular secondary ion fragments to be associated strongly with particular functional groups (in this multi‐functional surface situation). Inorganic residues resulting from wet chemical treatments were also investigated and here the two techniques were found to be more complementary. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
This follow‐up study describes the implementation of recently developed cross‐linking trichlorosilane surface chemistry with acoustic wave sensing technology for the real‐time and label‐free detection of biotin/avidin interactions. Biosensing platforms consist of unelectroded piezoelectric quartz resonator discs onto which functionalizable mixed organosilane adlayers are prepared using a new trichlorosilane cross‐linker in combination with a shorter monofunctional diluent molecule. Thiolated or aminated biotin probes can next be anchored to the mixed assembly in a single, preactivation‐free step through site‐specific coupling at pentafluorophenyl ester head moieties. Biosensing properties are assessed at ultra‐high frequency (>0.74 GHz) with the highly sensitive electromagnetic piezoelectric acoustic sensor using micromolar buffered solutions of avidin. This biosensor prototype – which generally displays good reproducibility – uses sacrificial bovine serum albumin to block non‐specific adsorption. This preliminary work in buffer constitutes an important step towards the development of real‐world biosensors able to perform with more demanding biological samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The influence of dipping temperature and time on the surface chemistry of hot‐dipped galvanized steel sheets during the alkaline degreasing process is investigated. The surface chemistry was monitored with scanning Auger electron spectroscopy (AES), X‐ray photoelectron spectroscopy (XPS), and time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS). The results show high Al concentrations on the untreated surfaces, which are significantly reduced during alkaline degreasing. The same conclusions could be drawn for the carbon compounds that accumulate on the surface during storage. The measurements reveal a gradual reduction in surface Al as the alkali solution temperature and/or degreasing time are increased. When degreasing was conducted at 70 °C for 30 s the surface was practically free from Al, which was present only in small islands. Furthermore, the experiments showed that the thickness of the oxide film covering the surfaces before and after alkaline degreasing is approximately 20 Å. The main constituents of the film varied from ZnAl hydroxide/oxide to Zn hydroxide/oxide, before and after degreasing, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Defects were created on the surface of highly oriented pyrolytic graphite (HOPG) by sputtering with an Ar+ ion beam, then characterized using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) at 500°C. In the XPS C1s spectrum of the sputtered HOPG, a sp3 carbon peak appeared at 285.3 eV, representing surface defects. In addition, 2 sets of peaks, the Cx and CxH ion series (where x = 1, 2, 3...), were identified in the ToF‐SIMS negative ion spectrum. In the positive ion spectrum, a series of CxH2+• ions indicating defects was observed. Annealing of the sputtered samples under Ar was conducted at different temperatures. The XPS and ToF‐SIMS spectra of the sputtered HOPG after 800°C annealing were observed to be similar to the spectra of the fresh HOPG. The sp3 carbon peak had disappeared from the C1s spectrum, and the normalized intensities of the CxH and CxH2+• ions had decreased. These results indicate that defects created by sputtering on the surface of HOPG can be repaired by high‐temperature annealing.  相似文献   

10.
We report on the electroless deposition of thin films of copper on poly(tetrafluoroethylene) (PTFE) and their use as substrates for electropolymerization of polypyrrole. Argon plasma‐treated PTFE films were modified by silanization using N‐[3(trimethoxysilyl)propyl]diethylenetriamine (TMS). The TMS‐modified PTFE films were subsequently activated by PdCl2 for the electroless deposition of copper. The omission of the commonly used SnCl2 sensitization step represents a significant process enhancement with environmental and cost benefits. The surface composition of the substrate (before and after surface treatments) and overlayer films was studied using high‐resolution x‐ray photoelectron spectroscopy. A combination of time‐of‐flight secondary ion mass spectrometry and water contact‐angle measurements was also used to study the PTFE surface after argon plasma treatment. The Cu/PTFE films were used as substrates for subsequent pyrrole electropolymerization in aqueous dodecylbenzene sulphonic acid (DBSA) solution. The DBSA‐doped polypyrrole overlayers were successfully deposited on the Cu/PTFE surface using a constant applied potential of 1.5 V. The resulting material exhibited a doping level of 39%, determined using chemical component analysis of the N 1s photoelectron peak. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Electropolymerization of pyrrole‐3‐acetic acid was performed by cyclic voltammetry on titanium and Ti90Al6V4 substrates with the aim of developing a multilayer structure for applications in advanced biomaterials. The polymeric films obtained were characterized by both XPS and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). Information on the poly(pyrrole‐3‐acetic acid) (PPy‐3‐acetic) surface structure was achieved by a detailed XPS analysis of C 1s and N 1s signals. The number of COOH groups was quantified by XPS coupled to a chemical derivatization reaction in which esterification with trifluoroethanol was exploited so that the presence of fluorine (or the CF3 component in C 1s spectra) could be used as a marker for COOH groups. As a result, it was found that more than 90% of the monomer units along PPy‐3‐acetic chains bear carboxylic functionalities, of which 60% are protonated and 40% are present as carboxylate groups. Some decarboxylation occurs with film ageing. The PPy‐3‐acetic films were also investigated by ToF‐SIMS in the negative ion mode, thus obtaining, for the first time, interesting information on the structure of the top surface layers of a polymer belonging to the polypyrrole family. In particular, clusters of peaks related to PPy‐3‐acetic oligomers were detected and the decarboxylation phenomenon on top of the polymer surface was confirmed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The surface composition of amorphous Finemet, Fe73Si15.8B7.2Cu1Nb3, was studied by X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The as‐received sample in the original state and after Ar+ sputter‐cleaning was analyzed at room temperature as well as after cooling to ? 155 °C. In the cooled state, the surface oxide layer composed of oxides of the alloy constituents was found to become enriched with elemental iron and depleted of elemental silicon, boron, oxygen and carbon as compared to the state at room temperature. Interaction of residual water vapor and hydrogen with the complex oxide layer occurring at low temperatures is believed to be responsible for the enhanced formation of surface hydroxides of the alloy constituents. The processes resulting in the observed redistribution of the elements on the surface of Finemet at low temperatures are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The main challenges in the manufacture of composite materials are low surface energy and the presence of silicon‐containing contaminants, both of which greatly reduce surface adhesive strength. In this study, carbon fiber (CF) and E‐glass epoxy resin composites were surface treated with the Accelerated Thermo‐molecular adhesion Process (ATmaP). ATmaP is a multiaction surface treatment process where tailored nitrogen and oxygen functionalities are generated on the surface of the sample through the vaporization and atomization of n‐methylpyrrolidone solution, injected via specially designed flame‐treatment equipment. The treated surfaces of the polymer composites were analyzed using XPS, time of flight secondary ion mass spectrometry (ToF‐SIMS), contact angle (CA) analysis and direct adhesion measurements. ATmaP treatment increased the surface concentration of polar functional groups while reducing surface contamination, resulting in increased adhesion strength. XPS and ToF‐SIMS showed a significant decrease in silicon‐containing species on the surface after ATmaP treatment. E‐glass composite showed higher adhesion strength than CF composite, correlating with higher surface energy, higher concentrations of nitrogen and C?O functional groups (from XPS) and higher concentrations of oxygen and nitrogen‐containing functional groups (particularly C2H3O+ and C2H5NO+ molecular ions, from ToF‐SIMS). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The oxidation of iron (Fe) by water (D2O) vapour at low pressures and room temperature was investigated using time‐of‐flight (ToF) SIMS. The results supported those found previously using XPS and the QUASES? program in that a duplex oxide structure was found containing a thin outer surface hydroxide (Fe(OD)2) layer over an inner oxide (FeO) layer. The extraordinary depth resolution of the ToF‐SIMS profiles assisted in identifying the two phases; this resolution was achieved by compensation for surface roughness. A substantial concentration of deuterium was found in the subsurface oxide layer. This observation confirmed previous assessments that the formation of FeO was from the reaction of Fe(OD)2 with outward‐diffusing Fe, leaving deuterium as a reaction product. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Lacquer has been used in Asian countries for thousands of years as a natural coating material owing to its durable, adhesive, decorative, and protective properties. Protection and restoration of lacquer‐coated cultural remains has become an important subject, and identification of the lacquer types in old lacquer‐wares has also become very important for conservation and restoration research. This paper provides identification of several molecular species of vegetal‐source Asian lacquers with the aim of providing a methodology for application in the field of cultural heritage. Several chemical markers of the vegetal species in Asian lacquers were identified using a methodology consistent with the sampling restrictions required for cultural‐heritage objects. Surface analytical methods such as time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), X‐ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were used to characterize Korean, Chinese, and Vietnamese lacquers; avoiding time‐consuming and destructive extraction processes. These ToF‐SIMS results provided the structural characterization of a series of catechol derivatives. The ToF‐SIMS spectra of Rhus vernicifera from Korea and China, and Rhus succedanea from Vietnam indicated a series of urushiol and laccol repeat units, respectively, in the mass range of m/z 0–1800. Because of its sensitivity, specificity, and speed of analysis, the ToF‐SIMS technique can be used to investigate cultural lacquer‐coated treasures as well as to discriminate among different Asian lacquer coatings or binding mediums for the conservation or restoration of lacquer‐ware. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A novel physical entrapment process has been explored as an approach to surface incorporation of proteins within pre‐formed alginate fibres under mild conditions. Entrapment of the protein of choice was achieved by exposing the alginate fibres to a Na+‐rich NaCl/CaCl2 mixture solution, which caused the formation of a moderate dissociation layer into which the protein could diffuse. Subsequent addition of a large excess of multi‐valent cations led to the collapse of the surface and entrapment of the protein within the surface. Bovine serum albumin (BSA) was used as a model protein to investigate the effect of process parameters on the entrapment efficiency. Scanning electron microscopy revealed that there was an increase in the surface roughness and a slight increase in the average diameter of the fibres after protein entrapment. The presence of the protein at the surface of alginates after the entrapment process was confirmed by means of confocal laser‐scanning microscopy, X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The ion exchanges at the surface were evident, as detected by XPS and ToF‐SIMS. It was found that under fixed pre‐swelling conditions, the entrapment efficiency increased with increasing treatment time and, particularly, with protein concentration in the exposure solution. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) were used to study the surface composition and electronic structure of Finemet, Fe73Si15.8B7.2Cu1Nb3, in the original amorphous state and after gradual heating in vacuum to a temperature of 400 °C and cooling back to room temperature. It was found that relaxation processes occurring during heat treatment well below the crystallization onset caused the physico‐chemical state of Finemet surface to change irreversibly. In the relaxed alloy, the surface originally covered with the native air‐formed oxide was significantly enriched with elemental iron and depleted of other alloy constituents compared with the original state. Yet in the as‐quenched state, clustering of copper atoms on the Finemet surface was detected which was enhanced by heating. The thermal treatment resulted in the selective reduction of iron oxides and caused noticeable changes in the valence band structure and the Fe L3VV Auger spectrum associated with atomic redistribution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We report a multi‐instrument characterization of the carbon particles in carbon/polymer/nanodiamond core‐shell materials used for high‐performance liquid chromatography. These particles are prepared by the carbonization/pyrolysis of poly(divinylbenzene) (PDVB) microspheres. Scanning electron microscopy showed that the particles (4.9 µm initially) decreased in size after air oxidation (to 4.4 µm) and again after carbonization (down to 3.5 µm) but remained highly spherical. Brunauer–Emmett–Teller measurements showed low surface areas initially (as received: 1.6 m2/g, after air oxidation: 2.6 m2/g) but high values after carbonization (445 m2/g). Fourier transform infrared spectroscopy revealed the changes in the functional groups after air oxidation (C = O and C–O stretches appear), carbonization (carbon‐oxygen containing moieties disappear), and acid treatment (reintroduction of carbon‐oxygen containing moieties). X‐ray photoelectron spectroscopy (XPS) and elemental analysis revealed the surface and bulk oxygen contents before and after treatments. By XPS, the atom percent oxygen for the as received, air oxidized, carbonized, and acid treated particles are 8.7, 16.6, 3.7, and 13.8, respectively, and by elemental analysis, the percent oxygen in the materials is 0.6, 8.1, 0.9, 16.9, respectively. A principal components analysis of time‐of‐flight secondary ion mass spectrometry data identified ions that were enhanced in the different materials, where almost 90% of the variation in the analyzed peak areas was captured by two principle components. X‐ray diffraction and Raman spectroscopy suggested that the carbonized PDVB was disordered. Thermogravimetric analysis showed significant differences between the differently treated PDVB microspheres. This work applies directly to a commercial product and the process for preparing it. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
We apply a suite of analytical tools to characterize materials created in the production of microfabricated thin layer chromatography plates. Techniques used include X‐ray photoelectron spectroscopy (XPS), valence band spectroscopy, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) in both positive and negative ion modes, Rutherford backscattering spectroscopy (RBS), and helium ion microscopy. Materials characterized include: the Si(100) substrate with native oxide: Si/SiO2, alumina (35 nm) deposited as a diffusion barrier on the Si/SiO2: Si/SiO2/Al2O3, iron (6 nm) thermally evaporated on the Al2O3: Si/SiO2/Al2O3/Fe, the iron film annealed in H2 to make Fe catalyst nanoparticles: Si/SiO2/Al2O3/Fe(NP), and carbon nanotubes (CNTs) grown from the Fe nanoparticles: Si/SiO2/Al2O3/Fe(NP)/CNT. The Fe films and nanoparticles appear in an oxidized state. Some of the analyses of the CNTs/CNT forests appear to be unique: (i) the CNT forest appears to exhibit an interesting ‘channeling’ phenomenon by RBS, (ii) we observe an odd–even effect in the SIMS spectra of Cn species for n = 1 – 6, with the n ≥ 6 ions showing a steady decrease in intensity, and (iii) valence band characterization of CNTs using X‐radiation is reported. Initial analysis of the CNT forest by XPS shows that it is 100 at.% carbon. After one year, only ca. 0.25 at.% oxygen is observed. The information obtained from the combination of the different analytical tools provides a more complete understanding of our materials than a single technique, which is analogous to the story of ‘The Blind Men and the Elephant’. The raw XPS and ToF‐SIMS spectra from this study will be submitted to Surface Science Spectra for archiving. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Nitrilotris(methylene)triphosphonic acid (NP) is a technologically important molecule that has been used for years as a corrosion inhibitor and/or adhesion promoter on aluminum and other metal surfaces. However, to the best of our knowledge, the detailed surface characterization of NP adsorbed on aluminum, or on any other surface, has not been reported. Herein, we report an X‐ray photoelectron spectroscopy and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) analysis of a series of untreated and NP‐coated aluminum substrates that were exposed to the downstream products of a fluoroalkane + oxygen plasma for different amounts of time (from 0 to 20 s). As indicated by P 2p, N 1s, Al 2p, O 1s, and F 1s narrow scans, even a 4‐s plasma treatment significantly damages the NP protective layer and converts the native aluminum oxide into aluminum oxyfluoride. Heat treatment of the fluorine plasma‐treated samples in the air substantially converts the aluminum oxyfluoride back to aluminum oxide, while similar heating under vacuum results in little change to the materials. A slow loss of fluorine from the samples occurs over the course of weeks when they are stored in the air. A ToF‐SIMS analysis reveals sets of signals that are consistent with no surface treatment, NP treatment, or fluorine plasma treatment. A principal component analysis of the negative ion ToF‐SIMS spectra from the samples shows the expected differentiation of the samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号