首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Microporous Materials》1994,2(2):145-158
Silicalite synthesis from tetrapropylammonium (TPA+) sodium silicate gels was studied by X-ray diffraction, elemental analysis, ion exchange, 29Si magic angle spinning nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Based on this information we confirm a hydrogel—solid transformation mechanism for silicalite crystallization. The initial synthesis gel is a highly articulated silicate network containing pockets of water with solvated Na+ and TPA+ cations. As the silica condenses and becomes more hydrophobic, water and solvated cations are expelled. The condensed silicate gel then encapsulates the hydrophobic TPA+ cations in cages resembling the channel intersections of silicalite before X-ray crystalline silicalite is observed. Crystallization occurs within the gel via rearrangement of the TPA+-occluded silicate cages by the breaking and reformation of siloxane bonds into the more stable silicalite structure. Rates of nucleation and crystallization both increase with increasing TPA+ gel content. The amount of silicalite which forms is limited by the amount of TPA+, which must be present in the ratio of one TPA+ per channel intersection.  相似文献   

2.
Counterion binding in Na poly(acrylate) gel immersed in water/organic solvent [ethanol (EtOH), acetonitrile (AcN), or tetrahydrofuran (THF)] mixtures was investigated by 23Na‐NMR spectroscopy. With an increase in the content of an organic solvent (~40–50 vol %), the 23Na chemical shift significantly moved downfield on a gel collapse. This downfield shift strongly suggests that the gel collapse was induced by contact ion‐pair formation between the counterion and the carboxyl anion on the polymer. With a further increase in the solvent content (~90 vol %), the chemical shift for an EtOH system showed a slight upfield shift, while THF and AcN systems maintained downfield shifts. The contrasting behaviors for EtOH and the latter two solvent systems were interpreted as being caused by desolvation and resolvation of bound Na+ counterions because of deswelling and reswelling of the respective gels in the pertinent solvent concentration regions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4412–4420, 2004  相似文献   

3.
The use of lithium cation in composites of block copolymers [polyethylene‐b‐polyethylene oxide (PE‐b‐50%PEO and PE‐b‐80%PEO)] and their derivatives was tested as a modifier of the vapor sorption and impedance of these complexes. The block copolymer PE‐b‐80%PEO was modified by oxidation of its hydroxyl end group to both a carboxylic acid group (PE‐b‐80%PEO)CH2COOH and its sodium salt (PE‐b‐80%PEO)CH2COO? Na+ for the purpose of improving its compatibility and performance as a matrix for composites. These modified copolymers were characterized by FTIR, DSC, and mass spectrometry. The sorption of water of these copolymers and their composites with lithium nitrate was also compared, as well as the electrical properties of their composites were measured by electrical impedance spectroscopy. For the composites obtained with PE‐b‐80%PEO and lithium nitrate, it was found that lithium cation plays an important role increasing the sorption rate, which is maximized for the PE‐b‐80%PEO + (21% lithium nitrate) composite. For the copolymers (PE‐b‐80%PEO)CH2COOH and (PE‐b‐80%PEO)CH2COO? Na+ and their composites, the highest sorption rate was observed for salt in the following order: COO? Na+ > COOH > OH. The PE‐b‐80%PEO + (21% lithium nitrate) composite behaves as a solid polymeric ionic conductor fitting the Williams–Landel–Ferry equation. However, both (PE‐b‐80% PEO)CH2COOH and (PE‐b‐80%PEO)CH2COO? Na+ + (21% lithium nitrate) composites fitted the Variable Range Hopping equation, indicating a conductance trend with temperature governed by a thermally activated with energy of 0.482 and 0.524 eV and not by a relaxation process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1809–1817, 2010  相似文献   

4.
A Fourier transform infrared/attenuated total reflectance technique was used to study the diffusion of water through poly(styrene‐b‐isobutylene‐b‐styrene) block copolymers (BCPs), as well as sulfonated (H+) and Na+‐sulfonated ionomer versions. Diffusion data were collected and interpreted for these membranes versus polystyrene block composition, degree of sulfonation, Na+ ion content in the ionomers, and the effect of initially dry versus prehydrated conditions. An “early time” diffusion coefficient, D, decreased with increasing percent polystyrene for a series of unmodified BCPs. D decreased with increasing degree of sulfonation, and with increasing ion content for the Na+‐exchanged samples and this was interpreted in terms of diffusion limitations caused by a strong tendency for ion hydration. The method also yielded information relating to the time evolution of water structure from the standpoint of degree of intermolecular hydrogen bonding. Membrane prehydration causes profound increases in D for both the unmodified BCP and sulfonated samples, as in plasticization. The simultaneous acquisition of information relating to interactions between water molecules and interactions of water molecules with functional groups on the host polymer matrix offers more information than conventional diffusion measurement techniques that simply count transported molecules. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 764–776, 2005  相似文献   

5.
Spinodal decomposition in a chemically crosslinked N‐isopropylacrylamide (NIPA) polymer gel was investigated using turbidity and ultrasonic techniques. The turbidity of the quenched NIPA gel was measured over five orders of magnitude of timescales. With an increase of time, the gel transfers from a transparent and swollen gel to a cloudy and inhomogeneous gel, and eventually to a transparent and collapsed gel. The first transformation is a rapid process that only involves local arrangement of the polymer network and solvent into dilute and dense domains. The second transformation is a very slow process that involves global arrangement of the polymer network and solvent. The characteristic time for disappearance of the turbidity is proportional to the linear size squared at a constant temperature above Tc and increases exponentially as a function of the quenching depth of T ? Tc. By probing the movement of domains, a possible time‐dependent gel structure in the spinodal decomposition region is presented. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2168–2174, 2001  相似文献   

6.
Classical molecular dynamics simulations were carried out to investigate the hydrophilic to hydrophobic transition of PNIPAM‐co‐PEGMA close to its lower critical solution temperature (LCST) in 1 M NaCl solution. PNIPAM‐co‐PEGMA is a copolymer of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene glycol) methacrylate (PEGMA). The copolymer consists of 38 monomer units of NIPAM with two PEGMA chains attached to the PNIAPM backbone. The PNIPAM‐co‐PEGMA was observed to go through the hydrophilic?hydrophobic conformational change for simulations at temperature slightly above its LCST. Na+ ions were found to bind strongly and directly with amide O, even more strongly with the O atoms on PEGAMS chains, whereas Cl? ions only exhibit weak interaction with the polymer. Significantly a novel caged stable metal‐organic complex involving a Na+ ion coordinated by six O atoms from the copolymer was observed after the PNIPAM‐co‐PEGMA copolymer went through conformational transition to form a hydrophobic folded structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

7.
Peaks with anomalous abundance found in the mass spectra are associated with ions with enhanced stability. Among the scientific community focused on mass spectrometry, these peaks are called ‘magic peaks’ and their stability is often because of suggestive symmetric structures. Here, we report findings on ionised Na‐acetic acid clusters [Na+‐(AcA)n] produced by Na‐doping of (AcA)n and UV laser ionisation. Peaks labelled n = 2, 4, 8 are clearly distinguishable in the mass spectra from their anomalous intensity. Ab initio calculations helped elucidate cluster structures and energetic. A plausible interpretation of the magic peaks is given in terms of (AcA)n formed by dimer aggregation. The encasing of Na+ by twisted dimers is proposed to be the origin of the enhanced cluster stability. A conceivable dimer‐formed tube‐like closed structure is found for the Na+‐(AcA)8. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Organic structure‐directing agent (OSDA)‐free synthesis of zeolite beta is a subject of both scientific and industrial interest. Herein, we report a comprehensive investigation into the effects of various parameters on the seed‐assisted crystallization of zeolite beta in the absence of OSDA. The crystallization behavior of “OSDA‐free beta” is strongly governed by the chemical composition of the starting Na+‐aluminosilicate gel as well as by the Si/Al ratios of the calcined beta seed crystals, which are prepared using tetraethylammonium hydroxide (TEAOH). Furthermore, OSDA‐free beta seed crystals can be used to form zeolite beta, termed “green beta”. XRD, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, and 27Al magic angle spinning NMR analyses showed that the OSDA‐free beta and green beta were of high purity and crystallinity. The nitrogen adsorption–desorption of OSDA‐free beta and green beta revealed higher surface areas and larger volumes in the micropore region than those of the beta seeds synthesized with OSDA after calcination. These results provide a robust and reliable process for the environmentally friendly production of high‐quality zeolite beta in a completely OSDA‐free Na+‐aluminosilicate system.  相似文献   

9.
A method based on 1H high‐resolution magic angle spinning NMR has been developed for measuring concentration accurately in heterogeneous materials like that of ligands in chromatography media. Ligand concentration is obtained by relating the peak integrals for a butyl ligand in the spectrum of a water‐saturated chromatography medium to the integral of the added internal reference. The method is fast, with capacity of 10 min total sample preparation and analysis time per sample; precise, with a reproducibility expressed as 1.7% relative standard deviation; and accurate, as indicated by the excellent agreement of derived concentration with that obtained previously by 13C single‐pulse excitation MAS NMR. The effects of radiofrequency field inhomogeneity, spin rate, temperature increase due to spinning, and distribution and re‐distribution of medium and reference solvent both inside the rotor during spinning and between bulk solvent and pore space are discussed in detail. © 2016 The Authors Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.  相似文献   

10.
Different water environments in poly(N‐isopropyl acrylamide) (PNIPAAm) hydrogels are identified and characterized using 1H high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR). Local water environments corresponding to a “free” highly mobile species, along with waters showing restricted dynamics are resolved in these swollen hydro‐gels. For photo‐initiated polymerized PNIPAAm gels, an additional entrapped water species is observed. Spin–spin R2 relaxation experiments support the argument of reduced mobility in the restricted and entrapped water species. By combining pulse field gradient techniques with HRMAS NMR it is possible to directly measure the self‐diffusion rate for these different water environments. The behavior of the heterogeneous water environments through the lower critical solution temperature transition is described. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1521–1527  相似文献   

11.
Summary: Nylon‐6/Na+‐montmorillonite (MMT) nanocomposites (NNNs) are synthesized by a hydrolyzed ring‐opening polymerization. At a loading of only 2 wt.‐% MMT, the tensile modulus, the flexural modulus, and the heat distortion temperature of the NNNs exhibit increases of nearly 20%, 60%, and 63 °C, respectively. Compared with that of neat nylon‐6, the temperature of the main α‐relaxation (Tα) of the NNNs is shifted 3.6 °C toward higher temperatures and two β‐relaxation peaks are observed. Another interesting phenomenon is that there is a new melting peak (at about 206 °C) for the NNNs.

DSC second heating curves of neat nylon‐6 (N6), nylon‐6/Na+‐MMT nanocomposites with highly swollen Na+‐MMT (NHM), and nylon‐6/Na+‐MMT nanocomposites with slightly swollen Na+‐MMT (NSM) with various amounts of Na+‐MMT.  相似文献   


12.
The new L ‐lysine alkali‐metal salts 1 – 5 (M+=Na+ and K+) with different alkyl groups at the Nα‐position were easily synthesized, and their hydro‐ and organogelation properties were investigated. All compounds were H2O‐soluble, and some salts, especially the potassium salts, functioned as a hydrogenator that could gel water below 2 wt‐%. These salts also had organogelation abilities for many organic solvents.  相似文献   

13.
The collapse of alkali metal poly(acrylate) (PAAM) gels was investigated for various water/organic solvent mixture systems: methanol (MeOH), ethanol (EtOH), 2‐propanol (2PrOH), t‐butanol (tBuOH), dimethyl sulfoxide (DMSO), acetonitrile (AcN), acetone, tetrahydrofuran (THF), and dioxane. In order to ascertain the counterion specificity in the swelling behavior, four kinds of alkali metal counterions were used: Li+, Na+, K+, and Cs+. Remarkable solvent and counterion specificities were observed for every counterion species and every solvent system, respectively. For example, in aqueous EtOH the dielectric constants (Dcr) at which collapse occurred were in the order PAACs < PAALi < PAAK < PAANa. On the other hand, the Dcr at which PAALi gel collapsed increased in the order tBuOH < dioxane < THF < MeOH < 2PrOH < EtOH < acetone < AcN < DMSO, where the Dcr ranged from about 39 to about 67. This was in contrast to our previous observation for a partially quaternized poly(4‐vinyl pyridine) (P4VP) gel, which collapsed in a much narrower Dcr region in similar mixed solvents. The present solvent‐ and counterion‐specific collapses are discussed on the basis of solvent properties such as the dielectric constant and Gutmann's donor number and acceptor number of a pure solvent. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2791–2800, 2000  相似文献   

14.
Poly(N‐isopropylacrylamide) (PNIPAM) is well known to exhibit reentrant behavior or cononsolvency in response to the composition of a mixed solvent consisting of water and a low‐chain alcohol. Since the solvent structure plays an important role in this phenomenon, the presence of structure‐breaking/structure‐making ions in solution is expected to have a dramatic effect on the cononsolvency of PNIPAM. The present work examines the way that the presence of different salts can modify the reentrant‐phase diagram displayed by a cationic PNIPAM microgel in the mixed ethanol/water solvent. The effects of four Hofmeister anions—SO42?, Cl?, NO3? and SCN?—with different abilities to modify the solvent structure are analyzed. The species with kosmotropic or structure‐making character show a clear competition with ethanol for the water molecules, intensifying the nonsolvency of the PNIPAM with the EtOH volume fraction (?e). However, striking results are found with the most chaotropic or structure‐breaking anion, SCN?. In contrast to what happens in water‐rich solutions, the presence of SCN? in alcohol‐rich solvents enhances the solubility of the polymer, which macroscopically results in the microgel swelling. Moreover, this ion displays great stabilizing properties when ?e> is 0.2. These results have been explained by considering how chaotropic or structure‐breaking ions interact with water and ethanol molecules.  相似文献   

15.
New crown ether carrying two fluorionophores of cis‐dibenzothiazolyldibenzo‐24‐crown‐8 was synthesized from cis‐diformyldibenzo‐24‐crown‐8 and 2‐aminobenzenethiol. The binding behavior and the optical properties of the crown ether were examined through UV‐visible spectroscopy and fluorescence spectroscopy. When complexed with Na+, K+, Rb+, and Cs+ ions, it led to intramolecular charge transfer and caused the changes of the fluorescence spectra. The protonation of the crown ether was also studied. With protonation using CF3COOH, the absorption bands and the fluorescence spectroscopy changed, the maximal fluorescence wavelengths red shifted and the fluorescence intensity with the maximum at 433 nm enhanced strongly. J. Heterocyclic Chem., (2011).  相似文献   

16.
Pyrrolyl‐capped poly(N‐isopropylacrylamide) macromonomers (Py‐PNIPAM) were prepared through reversible addition‐fragmentation‐transfer polymerization with benzyl 1‐pyrrolylcarbodithioate as chain‐transfer agent. Polymerizations of Py‐PNIPAM with/without pyrrole using AgNO3 as oxidizing agent and dimethylforamide as solvent resulted in graft copolymers of polypyrrole‐graft‐poly(N‐isopropylacrylamide) (PPy‐g‐PNIPAM) as well as silver nanoparticles, leading to the formation of PPy‐g‐PNIPAM/silver nanocomposites. The resulting nanocomposites were soluble in water when the content of PPy was low, and when the molar ratio of Py/Py‐PNIPAM increased to 30, the resulting products became insoluble in water. The resulting nanocomposites had special optical properties because of PPy as well as the temperature‐responsible PNIPAM. The chemical structure and composition of nanocomposite were characterized by 1H nuclear magnetic resonance spectroscopy, gel permeation chromatograms, fourier transform infrared spectroscopy, and X‐ray diffraction. Their optical properties were characterized by UV–vis and fluorescence spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6950–6960, 2008  相似文献   

17.
1H‐detected magic‐angle spinning NMR experiments facilitate structural biology of solid proteins, which requires using deuterated proteins. However, often amide protons cannot be back‐exchanged sufficiently, because of a possible lack of solvent exposure. For such systems, using 2H excitation instead of 1H excitation can be beneficial because of the larger abundance and shorter longitudinal relaxation time, T1, of deuterium. A new structure determination approach, “quadruple‐resonance NMR spectroscopy”, is presented which relies on an efficient 2H‐excitation and 2H‐13C cross‐polarization (CP) step, combined with 1H detection. We show that by using 2H‐excited experiments better sensitivity is possible on an SH3 sample recrystallized from 30 % H2O. For a membrane protein, the ABC transporter ArtMP in native lipid bilayers, different sets of signals can be observed from different initial polarization pathways, which can be evaluated further to extract structural properties.  相似文献   

18.
Palladium chloride was grafted to amino‐functionalized MCM‐41 to prepare heterogeneous catalysts. XRD, N2 adsorption–desorption isotherms, IR, 13C and 29Si cross‐polarization magic‐angle spinning NMR spectroscopy and XPS techniques were employed to characterize the catalytic materials. The heterogeneous palladium catalyst exhibited excellent catalytic activity for the Heck vinylation of iodobenzene with methyl acrylate, giving 92% yield of methyl cinnamate in the presence of N‐methylpyrrolidone (NMP) and triethylamine (Et3N). The stability of the heterogeneous catalyst was also studied in detail. The catalytic tests showed that the palladium leaching correlated to solvent, base and palladium loading. The heterogeneous catalyst exhibited excellent stability towards loss of activity and palladium leaching was not observed during six recycles in the presence of toluene and Na2CO3. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Electronic structures and spectroscopic properties of mixed‐ligand cyclometallated iridium complexes with general formula [Ir(N?C)2(N?N)]+ (N?C = 2‐phenylpyridine, N?N = Hcmbpy = 4‐carboxyl‐4‐methyl‐2,2‐bipyridine, 1 ; H2dcbpy = 4,4‐dicarboxyl‐2,2‐bipyridine, 2 ) were studied theoretically. The geometries of the complexes in ground and excited state were optimized at B3LYP and CIS levels, respectively. The absorption and emission of the complexes in CH3CN solutions were calculated by time‐dependent density functional theory (TD‐DFT) with the PCM solvent model. The calculated absorptions and emissions of the complexes are in good agreement with the measured results. The deprotonation influence on the electronic structure and the optical properties of 2 was also investigated. The results indicate that the deprotonation which occurs on the COOH groups influences the geometries of the complexes in ground and excited state slightly but leads to significant blue‐shifts in low energy absorption and emission maximum. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

20.
This paper presents results from a series of pulsed field gradient (PFG) NMR studies on lipophilic guanosine nucleosides that undergo cation‐templated assembly in organic solvents. The use of PFG‐NMR to measure diffusion coefficients for the different aggregates allowed us to observe the influences of cation, solvent and anion on the self‐assembly process. Three case studies are presented. In the first study, diffusion NMR confirmed formation of a hexadecameric G‐quadruplex [G 1 ]16 ? 4 K+ ? 4 pic? in CD3CN. Furthermore, hexadecamer formation from 5′‐TBDMS‐2′,3′‐isopropylidene G 1 and K+ picrate was shown to be a cooperative process in CD3CN. In the second study, diffusion NMR studies on 5′‐(3,5‐bis(methoxy)benzoyl)‐2′,3′‐isopropylidene G 4 showed that hierarchical self‐association of G8‐octamers is controlled by the K+ cation. Evidence for formation of both discrete G8‐octamers and G16‐hexadecamers in CD2Cl2 was obtained. The position of this octamer–hexadecamer equilibrium was shown to depend on the K+ concentration. In the third case, diffusion NMR was used to determine the size of a guanosine self‐assembly where NMR signal integration was ambiguous. Thus, both diffusion NMR and ESI‐MS show that 5′‐O‐acetyl‐2′,3′‐O‐isopropylidene G 7 and Na+ picrate form a doubly charged octamer [G 7 ]8 ? 2 Na+ ? 2 pic? 9 in CD2Cl2. The anion's role in stabilizing this particular complex is discussed. In all three cases the information gained from the diffusion NMR technique enabled us to better understand the self‐assembly processes, especially regarding the roles of cation, anion and solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号