首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal conductivity and thermal diffusivity of oil‐palm‐fiber‐reinforced untreated (Sample 1) and differently treated composites were measured with the transient plane source technique at room temperature and under normal pressure. All the composites were 40% oil‐palm fiber by weight. The fibers were treated with alkali (Composite 2), silane (Composite 3), and acetic acid (Composite 4) and reinforced in a phenolformaldehyde matrix. The thermal conductivity and thermal diffusivity of the composites increased after treatment to different extents. The thermal conductivity of the treated fibers as well as of the untreated fibers was calculated theoretically. The model results show that the thermal conductivity of the untreated fiber was smaller than the thermal conductivity of the treated fibers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 916–921, 2000  相似文献   

2.
A regular Kelvin foam model was used to predict the linear thermal expansion coefficient and bulk modulus of crosslinked, closed‐cell, low‐density polyethylene (LDPE) foams from the polymer and gas properties. The materials used for the experimental measurements were crosslinked, had a uniform cell size, and were nearly isotropic. Young's modulus of biaxially oriented polyethylene was used for modeling the cell faces. The model underestimated the foam linear thermal expansion coefficient because it assumed that the cell faces were flat. However, scanning electron microscopy showed that some cell faces were crumpled as a result of foam processing. The measured bulk modulus, which was considerably smaller than the theoretical value, was used to estimate the linear thermal expansion coefficient of the LDPE foams. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3741–3749, 2004  相似文献   

3.
The validity of two approaches widely used to determine the radiant thermal conductivity in plastic foams is discussed. While one approach is based on the solution of a geometric model, the other is derived from the experimental determination of the extinction coefficient. A comparison to recently reported experimental data shows that the geometric approach predicts values that are in good agreement. In contrast, values deduced from measurements of the mean extinction coefficient significantly underestimate the radiant thermal conductivity, an effect that can be traced to the way that the extinction coefficient is measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 190–192, 2005  相似文献   

4.
The thermal conductivity and the cellular structure of novel open‐cell polyolefin foams produced by compression molding and based on blends of an ethylene‐vinyl acetate copolymer (EVA) and a low‐density polyethylene (LDPE) have been studied in the temperature range between 24 and 50 °C. The experimental results have shown that the cellular structure of the analyzed materials has interconnected cells because of the presence of large and small holes in the cell walls, this structure being clearly different to the typical structure of open‐cell polyurethane foams. It has been found that at low temperatures the materials have a slightly higher thermal conductivity than closed‐cell polyolefin foams of similar densities. The different mechanisms of heat flow, conduction, convection, and radiation have been analyzed by using experimental measurements and a theoretical model. It has been proved that, in spite of having an open‐cell structure, the convention mechanism is negligible, being the radiation mechanism the one which made different the conductivity of materials with varying cellular structures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 212–221, 2008  相似文献   

5.
The thermal conductivity and the cellular structure as well as the matrix polymer morphology of a collection of chemically crosslinked low‐density closed cell polyolefin foams, manufactured by a high‐pressure nitrogen gas solution process, have been studied. With the aid of a useful theoretical model, the relative contribution of each heat‐transfer mechanism (conduction through the gas and solid phases and thermal radiation) has been evaluated. The thermal radiation can be calculated by using a theoretical model, which takes into account the dependence of this heat‐transfer mechanism with cell size, foam thickness, chemical composition, and matrix polymer morphology. A simple equation, which can be used to predict the thermal conductivity of a given material, is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 993–1004, 2000  相似文献   

6.
This article is dedicated to the study of the thermal parameters of composite materials. A nonlinear least‐squares criterion is used on experimental transfer functions to identify the thermal conductivity and the diffusivity of aluminum‐polymer composite materials. The density measurements were achieved to deduce the specific heat and thereafter they were compared to values given by differential scanning calorimetry measurement. The thermal parameters of the composite material polypropylene/aluminum were investigated for the two different types of aluminum filler sizes. The experimental data were compared with several theoretical thermal conductivity prediction models. It was found that both the Agari and Bruggeman models provide a good estimation for thermal conductivity. The experimental values of both thermal conductivity and diffusivity have shown a better heat transport for the composite filled with large particles. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 722–732, 2004  相似文献   

7.
8.
Drying process of biomass porous media is widely involved in agricultural products processing. Accurate measurement of thermal properties and prediction of thermal conductivity variation at different conditions is the key of heat transfer simulation and optimization for drying process. The present work measured the thermal properties of cut tobacco in a constant temperature experimental platform by transient plane source method (TPS method), and developed a model to predict thermal conductivity of cut tobacco at different conditions. The results showed that there was a high test precision for thermal properties measurement of cut tobacco by TPS method. Thermal conductivity of cut tobacco increased significantly with the increase of temperature and moisture content at the range of 25–65 °C and 12.5–25 %. Volume heat capacities showed a similar trend. The model predictions of thermal conductivity showed strong correlation coefficient with experimental values. The deviation of model predictions is less than 10 %, which indicated that the established model had a good prediction precision for thermal conductivity of cut tobacco.  相似文献   

9.
The extinction coefficient of a collection of polyolefin foams was investigated experimentally and theoretically. Transmittance spectra were measured with Fourier transform infrared spectroscopy (FTIR) for samples of various thicknesses and different chemical compositions, densities, colors and structural characteristics. The extinction coefficients were then calculated by applying Beer's law. The results showed that the extinction coefficient decreased with the mean cell size and that this was the main structural parameter influencing the extinction coefficient of the foams under study. The experimental results agreed well with the Glicksman model. Moreover, the total thermal conductivity was calculated in terms of the Rosseland equation with an accuracy of 5%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1608–1617, 2005  相似文献   

10.
A constitutive model for evaluating the compressive behavior of Poly(methyl‐methacrylate) (PMMA) open‐cell foams is herein proposed. Specifically, the study investigates the viscoelastic and viscoplastic behaviors of the PMMA open‐cell foams. The constitutive equation is expressed in terms of the following polymer and foam properties: elastic modulus, relative density, as well as the relaxation and densification constants. PMMA open‐cell foams are manufactured using a gas foaming/particulate leaching method and uniaxial compression tests are performed. The mechanical properties and compressive stress‐strain responses obtained from the experiments are compared with those predicted by the proposed constitutive model. The results suggest that the constitutive model is an apt one for assessing and evaluating the compressive behaviors of PMMA open‐cell foams. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 436–443, 2007  相似文献   

11.
The effective thermal conductivities of gas-saturated porous methane hydrates were measured by a single-sided transient plane source (TPS) technique and simulated by a generalized fractal model of porous media that based on self-similarity.The density of porous hydrate,measured by the volume of the sample in the experimental system,was used to evaluate the porosity of methane hydrate samples.The fractal model was based on Sierpinski carpet,a thermal-electrical analogy technique and one-dimensional heat flow assumption.Both the experimental and computational results show the effective thermal conductivity of methane hydrate decreases with the porosity increase.The porosity of 0.3 can reduce the thermal conductivity of the methane hydrate by 25%.By analysis of the experimental data and the simulative result,the optimized thermal conductivity of the zero-porosity methane hydrate is about 0.7 W m-1K-1.  相似文献   

12.
To understand the influence to thermal conductivity by bridging in the polymer fibers, the thermal conductivity, and thermal diffusivity of ramie fiber and those bridged by formaldehyde (HCHO) using vapor‐phase method (VP‐HCHO treatment) were investigated in the lower temperature range. The thermal conductivities of ramie fiber with and without VP‐HCHO treatments decreased with decreasing temperature. Thermal diffusivities of ramie fiber with and without VP‐HCHO treatments were almost constant in the temperature range of 250–50 K, and increased by decreasing temperature below 50 K. Thermal conductivity and thermal diffusivity of ramie fiber decreased by VP‐HCHO treatment. The crystallinities and orientation angles of ramie fibers with and without VP‐HCHO treatment were measured using solid state NMR and X‐ray diffraction. These were almost independent of VP‐HCHO treatment. Although tensile modulus decreased slightly by VP‐HCHO treatment, the decrease could not explain the decrease in thermal conductivity and diffusivity with decreasing sound velocity. The decrease of the thermal diffusivity and thermal conductivity by VP‐HCHO treatment suggested the possibility of the reduction of the mean free path of phonon by HCHO in VP‐HCHO treated ramie fiber. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2754–2766, 2005  相似文献   

13.
Two‐way multicomponent diffusion processes in polymeric nanocomposite foams, where the condensed phase is nanoscopically reinforced with impermeable fillers, are investigated. The diffusion process involves simultaneous outward permeation of the components of the dispersed gas phase and inward diffusion of atmospheric air. The transient variation in thermal conductivity of foam is used as the macroscopic property to track the compositional variations of the dispersed gases due to the diffusion process. In the continuum approach adopted, the unsteady‐state diffusion process is combined with tortuosity theory. The simulations conducted at ambient temperature reveal distinct regimes of diffusion processes in the nanocomposite foams owing to the reduction in the gas‐transport rate induced by nanofillers. Simulations at a higher temperature are also conducted and the predictions are compared with experimentally determined thermal conductivities under accelerated diffusion conditions for polyurethane foams reinforced with clay nanoplatelets of varying individual lamellar dimensions. Intermittent measurements of foam thermal conductivity are performed while the accelerated diffusion proceeded. The predictions under accelerated diffusion conditions show good agreement with experimentally measured thermal conductivities for nanocomposite foams reinforced with low and medium aspect‐ratios fillers. The model shows higher deviations for foams with fillers that have a high aspect ratio.  相似文献   

14.
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI–DBSA). PANI–DBSA, low‐density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin‐rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI–DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI–DBSA/LDPE, and this was attributed to the PANI–DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high‐resolution optical microscopy indicated that PANI–DBSA formed a conducting network at a high concentration of PANI–DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3750–3758, 2004  相似文献   

15.
Polyurethane elastomers of a controlled molecular architecture were synthesized using a two‐step polymerization technique. The building blocks of the elastomeric materials included urea–urethane prepolymers end‐capped with diisocyanate groups and had an exact number of urea groups at both ends. Two‐dimensional bifurcated hydrogen‐bonding networks incorporating the urea groups were, with differential scanning calorimetric and dynamic mechanical thermal analyzer techniques, responsible for the increase in the glass‐transition temperature (Tg) of the hard block and sharp interface morphology between the pure “hard” domains and pure “soft” domains. The higher extent of the phase separation between the two phases contributed to higher elastic moduli for the hard blocks and higher tensile strength for the elastomeric samples. Higher elongation values were attributed to the liberation of the elastomeric chain ends that otherwise would have been constrained in the interface region. The higher Tg values of the hard blocks corresponded to an increase in the hardness values and a decrease in the tear‐strength values. The increase in the amount of urea groups within the hard segments, as a result of the increased amount of water and blowing catalyst, resulted in elastomeric foams with higher open‐cell content. This resulted in lower resilience values as measured using the pendulum rebound test and was attributed to the ability of the open cells to absorb and dissipate energy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2526–2536, 2002  相似文献   

16.
A series of sulfonated poly(aryl ether ketone)s (SPAEKs) were prepared by aromatic nucleophilic polycondensation of 2,6‐dihydroxynaphthalene with 5,5′‐carbonyl‐bis(2‐fluorobenzenesulfonate) and 4,4′‐difluorobenzophenone. The structure and degree of sulfonation (DS) of the SPAEKs were characterized using 1H NMR spectroscopy. The experimentally observed DS values were close to the expected values derived from the starting material ratios. The thermal stabilities of the SPAEKs were characterized by thermogravimetric analysis, which showed that in acid and sodium salt forms they were thermally stable in air up to about 240 and 380 °C, respectively. Transparent membranes cast from the directly polymerized SPAEKs exhibited good mechanical properties in both dry and hydrated states. The dependence of water uptake and of membrane swelling on the DS at different temperatures was studied. SPAEK membranes with a DS from 0.72 to 1.60 maintained adequate mechanical properties after immersion in water at 80 °C for 24 h. The proton conductivity of SPAEK membranes with different degrees of sulfonation was measured as a function of temperature. The proton conductivity of the SPAEK films increased with increased DS, and the highest room temperature conductivity (4.2 × 10?2 S/cm) was recorded for a SPAEK membrane with a DS of 1.60, which further increased to 1.1 × 10?1 S/cm at 80 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2866–2876, 2004  相似文献   

17.
This article investigates electrical conductivity and rheological aspects of cyclic olefin copolymer (COC) composites containing both carbon fiber (CF) and carbon black (CB) at various concentrations. The different formulations of carbon filled COC were compression molded in such a manner that the formed circular sheets exhibited preferred in‐plane filler orientation. Through‐plane and in‐plane conductivity were measured by 2‐probe and 4‐probe methods, respectively, while an ARES rheometer in dynamic mode was employed to measure the storage modulus and complex viscosity. It was found that formulations with CF:CB ratios around 3 and where the CB content was close or below its critical percolation concentration resulted in higher electrical conductivity while maintaining the viscosity of the composite at a level acceptable for polymer processing machinery. For those composites containing both fillers, collaborative associations between the CB and CF fillers were found in the established percolating network structure, producing measured conductivities which exceeded the estimated values by the additive rule by up to sixfold. An empirical expression to handle hybrid filler systems is proposed in this work based on the standard percolation model. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1808–1820, 2007  相似文献   

18.
This article deals with the chemical synthesis and characterization of poly(2‐fluoroaniline) (P2FAn) and polyfuran (PFu) homopolymers and PFu/P2FAn and P2FAn/PFu composites. P2FAn and PFu homopolymers were synthesized using ammonium persulfate and antimony (III) chloride as catalyst, respectively. These homopolymers and composites were studied in the doped state using Fourier transform infrared spectroscopy and ultraviolet–visible absorption spectroscopy, thermogravimetric analysis, scanning electron microscopy, four‐probe conductivity technique, and Gouy Scale measurements. PFu/P2FAn and P2FAn/PFu composites were found to possess different thermal, conductivity, electronic, and morphological properties from each other when synthesis order of guest and host polymers was varied. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3359–3367, 2004  相似文献   

19.
A series of sulfonated polyimides with increasing alkyl substituents in the o‐position to diamine were synthesized from 4,4′‐methylene dianiline, 4,4′‐diamine‐3,3′‐dimethyl‐diphenylmethane, and 4,4′‐diamine‐3,5,3′,5′‐tetraethyl‐diphenylmethane using 1,4,5,8‐naphthalenetetracarboxylic dianhydride and perylenetetracarboxylic dianhydride by chemical imidization method. 4,4′‐Diaminobiphenyl 2,2′‐disulfonic acid was used as sulfonated diamine. The variation in the membrane properties with increase in substitution was analyzed. Solubility increased with substitution whereas the thermal stability decreased with increase in substitution. Ion exchange capacity and water uptake reduced with increase in substitution because of the low sulfonic acid content at a particular weight due to the increased molecular weight of the repeating unit. The conductivity of the substituted diamines was higher than the unsubstituted diamines at higher temperature regardless of low ion exchange capacity and water uptake. The increase in conductivity with increase in temperature was more rapid in polyimides than in Nafion®115. Hydrolytic stability of the polyimides with substitution is more than the unsubstituted diamines. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3621–3630, 2004  相似文献   

20.
A sulfonimide‐containing comonomer derived from 4,4′‐dichlorodiphenylsulfone was synthesized and copolymerized with 4,4′‐dichlorodiphenylsulfone and 4,4′‐biphenol to prepare sulfonimide‐containing poly(arylene ether sulfone) random copolymers (BPSIs). These copolymers showed slightly higher water uptake than disulfonated poly(arylene ether sulfone) copolymer (BPSH) controls, but their proton‐conductivity values were very comparable to those of the BPSH series with similar ion contents. The proton conductivity increased with the temperature for both systems. For samples with 30 mol % ionic groups, BPSI showed less temperature dependence in proton conductivity and slightly higher methanol permeability in comparison with BPSH. The thermal characterization of the sulfonimide copolymers showed that both the acid and salt forms were stable up to 250 °C under a nitrogen atmosphere. The results suggested that the presumed enhanced stability of the sulfonimide systems did not translate into higher protonic conductivity in liquid water. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6007–6014, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号