首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A new type of positive α‐iPP spherulites has been developed by self‐seeding process. The growth process of these positive α‐iPP spherulites is just like “photographic development process,” which is very different from the conventional growth process of polymer spherulites. Scanning electron microscopy (SEM) was used to explore the morphologies of these positive α‐iPP spherulites on a lamellar level. The results show that these spherulites are composed of a large number of lamellae having interwoven structures, which result in different optical character, special melting behavior, and different contrast under SEM as compared with the conventional melt‐crystallized spherulites. The development of these interwoven lamellar structures has been considered because in the sites of the original spherulites, a large number of self‐nuclei are formed because of the incomplete melting of the original spherulites and these induce nearly equal number of radial and tangential lamellae at rather high temperatures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1114–1121, 2006  相似文献   

2.
A new aryl polyester, poly(pentamethylene terephthalate) (PPT) with five methylene groups in the repeat unit, was synthesized. Its multiple‐melting behavior and crystal structure were analyzed with differential scanning calorimetry and wide‐angle X‐ray diffraction. In addition, the spherulitic/lamellar morphology of melt‐crystallized PPT was investigated. Typical Maltese‐cross spherulites (with no rings) were seen in melt‐crystallized PPT at low temperatures (70–90 °C), but ring patterns were seen in PPT crystallized only at temperatures ranging from 100 to 115 °C, whereas rings disappeared with crystallization above 120 °C. The mechanisms of the rings in PPT were explained with several coordinated directional changes (wavy changes, twisting changes, and combinations) in the lamellae during growth. Scanning electron microscopy, in combination with atomic force microscopy, further proved that the ringed spherulites originated from the aggregation of sufficient numbers of edge‐on lamellar crystals; the radial‐growth edge‐on/flat‐on lamellae could be twisted and/or waved to form realistic band patterns. A postulated model properly described a possible origin of the ring bands through combined mechanisms of waving (zigzagging) and twisting (spiraling) of the lamellae during crystallization. Superimposed twisting and/or wavy models during crystallization were examined as examples. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4421–4432, 2004  相似文献   

3.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

4.
In previous studies, we found that Young's moduli of quenched isotactic polypropylene/high‐density polyethylene (iPP/HDPE) exceeded the upper bound, calculated from the Voigt model, with the moduli of the quenched homopolymers as those of the two components. We suggested that this might be due to crystallization, as the components crystallized at higher temperatures in the blend than on their own. We repeated the same set of measurements, this time on iPP/HDPE blends that were cooled slowly. We also examined crystallization at various rates of cooling with differential scanning calorimetry. At slow cooling rates, the HDPE and iPP components in the blends crystallize at lower temperatures than in the pure homopolymers, suggesting that the presence of one component inhibits rather than promotes the crystallization of the other. Electron microscopy of slowly cooled blends revealed very different interfacial morphologies depending on whether the HDPE or the iPP crystallizes first. Young's moduli of most of the blends lie on the upper bound; however, some blends with co‐continuous morphologies fall well below the lower bound. The mechanical properties are discussed in terms of the interfacial morphology, the crystallization behavior, and the large‐scale phase separation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1384–1392, 2003  相似文献   

5.
The development of the poly(3‐hydroxybutyrate) (PHB) morphology in the presence of already existent poly(vinylidene fluoride) (PVDF) spherulites was studied by two‐stage solidification with two separate crystallization temperatures. PVDF formed irregular dendrites at lower temperatures and regular, banded spherulites at elevated temperatures. The transition temperature of the spherulitic morphology from dendrites to regular, banded spherulites increased with increasing PVDF content. A remarkable amount of PHB was included in the PVDF dendrites, whereas PHB was rejected into the remaining melt from the banded spherulites. When PVDF crystallized as banded spherulites, PHB could consequently crystallize only around them, if at all. In contrast, PHB crystallized with a common growth front, starting from a defined site in the interfibrillar regions of volume‐filling PVDF dendrites. It formed by itself dendritic spherulites that included a large number of PVDF spherulites. For blends with a PHB content of more than 80 wt %, for which the PVDF dendrites were not volume‐filling, PHB first formed regular spherulites. Their growth started from outside the PVDF dendrites but could later interpenetrate them, and this made their own morphology dendritic. These PHB spherulites melted stepwise because the lamellae inside the PVDF dendrites melted at a lower temperature than those from outside. This reflected the regularity of the two fractions of the lamellae because that of those inside the dendrites of PVDF was controlled by the intraspherulitic order of PVDF, whereas that from outside was only controlled by the temperature and the melt composition. The described morphologies developed without mutual nucleating efficiency of the components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 873–882, 2003  相似文献   

6.
The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(β‐hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small‐angle X‐ray scattering (SAXS). As the PMA content increases in the blends, the glass‐transition temperature and cold‐crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium‐melting‐point depression, is −0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PHB. The radial growth rates of spherulites were analyzed with the Lauritzen–Hoffman model. The spherulites of PHB were volume‐filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1860–1867, 2000  相似文献   

7.
8.
The crystallization and phase morphology of the injection‐molded isotactic polypropylene (iPP)/syndiotactic polypylenen (sPP) blends were studied, focusing on the difference between the skin layer and core layer. The distribution of crystallinity of PPs in the blends calculated based upon the DSC results shows an adverse situation when compared with that in the neat polymer samples. For 50/50 wt % iPP/sPP blend, the SEM results indicated that a dispersed structure in the skin layer and a cocontinuous structure in the core layer were observed. A migration phenomenon that the sPP component with lower crystallization temperature and viscosity move to the core layer, whereas the iPP component with higher crystallization temperature and viscosity move to the skin layer, occurred in the iPP/sPP blend during injection molding process. The phenomenon of low viscosity content migrate to the low shear zone may be due to the crystallization‐induced demixing based upon the significant difference of crystallization temperature in the sPP and iPP. This migration caused the composition inhomogeneity in the blend and influenced the accuracy of crystallinity calculated based upon the initial composition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2948–2955, 2007  相似文献   

9.
The in situ microfibrillar blend of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) was fabricated through a slit die extrusion, hot stretch, and quenching process. The morphological observation indicates that while the unstretched blend appears to be a common incompatible morphology, the hot stretched blends present PET in situ fibers whose characteristics, such as diameter and aspect ratio, are dependent on the hot stretching ratio (HSR). When the HSR is low, the elongated dispersed phase particles are not uniform at all. As the HSR is increased to 16.1, well‐defined PET microfibers were generated in situ, whose diameter is rather uniform and is around 0.6 ~ 0.9 μm. The presence of the PET phase shows significant nucleation ability for crystallization of iPP. Higher HSR corresponds to faster crystallization of the iPP matrix, while as HSR is high up to a certain level, its variation has little influence on the onset and maximum crystallization temperatures of the iPP matrix during cooling from melt. Optical microscopy observation reveals that transcrystalline layers form in the microfibrillar blend, in which the PET microfibers play as the center row nuclei. In the as‐stretched microfibrillar blends, small‐angle X‐ray scattering measurements show that matrix iPP lamellar crystals have the same orientation as PET lamella. The long period of lamellar crystals of iPP is not affected by the presence of PET micofibers. Wide‐angle X‐ray scattering reveals that the β phase of iPP is obtained in the as‐stretched blends, whose concentration increases with the increase of the HSR. This suggests that finer PET microfibers can promote the occurrence of the β phase. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4095–4106, 2004  相似文献   

10.
Dynamically cured polypropylene (PP)/epoxy blends compatibilized with maleic anhydride grafted PP were prepared by the curing of an epoxy resin during melt mixing with molten PP. The morphology and crystallization behavior of dynamically cured PP/epoxy blends were studied with scanning electron microscopy, differential scanning calorimetry, and polarized optical microscopy. Dynamically cured PP/epoxy blends, with the structure of epoxy particles finely dispersed in the PP matrix, were obtained, and the average diameter of the particles slightly increased with increasing epoxy resin content. In a study of the nonisothermal crystallization of PP and PP/epoxy blends, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of the PP component in the PP/epoxy blends. The isothermal crystallization kinetics of PP and dynamically cured PP/epoxy blends were described by the Avrami equation. The results showed that the Avrami exponent of PP in the blends was higher than that of PP, and the crystallization rate was faster than that of PP. However, the crystallization rate decreased when the epoxy resin content was greater than 20 wt %. The crystallization thermodynamics of PP and dynamically cured PP/epoxy blends were studied according to the Hoffman theory. The chain folding energy for PP crystallization in dynamically cured PP/epoxy blends decreased with increasing epoxy resin content, and the minimum of the chain folding energy was observed at a 20 wt % epoxy resin content. The size of the PP spherulites in the blends was obviously smaller than that of PP. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1181–1191, 2004  相似文献   

11.
Thermosetting blends of a biodegradable poly(ethylene glycol)‐type epoxy resin (PEG‐ER) and poly(?‐caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass‐transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG‐ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG‐ER blends, that is, a PCL‐rich phase and a PEG‐ER crosslinked phase composed of an MAH‐cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase‐separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG‐ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2833–2843, 2004  相似文献   

12.
The development of the morphology in poly(vinylidene fluoride)/poly(3‐hydroxybutyrate) (PVDF/PHB) blends upon isothermal and anisothermal crystallization is investigated by time‐resolved small‐ and wide‐angle X‐ray scattering. The components are completely miscible in the melt but crystallize separately; they crystallize stepwise at different temperatures or sequentially with isothermal or anisothermal conditions, respectively. The PVDF crystallizes undisturbed whereas PHB crystallizes in a confined space that is determined by the existing supermolecular structure of the PVDF. The investigations reveal that composition inhomogeneities may initially develop in the remaining melt or in the amorphous phases of the PVDF upon crystallization of that component. The subsequent crystallization of the PHB depends on these heterogeneities and the supermolecular structure of PVDF (dendritically or globularly spherulitic). PHB may form separate spherulites that start to grow from the melt, or it may develop “interlocking spherulites” that start to grow from inside a PVDF spherulite. Occasionally, a large number of PVDF spherulites may be incorporated into PHB interlocking spherulites. The separate PHB spherulites may intrude into the PVDF spherulites upon further growth, which results in “interpenetrating spherulites.” Interlocking and interpenetrating are realized by the growth of separate lamellar stacks (“fibrils”) of the blend components. There is no interlamellar growth. The growth direction of the PHB fibrils follows that of the existing PVDF fibrils. Depending on the distribution of the PHB molecules on the interlamellar and interfibrillar PVDF regions, the lamellar arrangement of the PVDF may contract or expand upon PHB crystallization and the adjacent fibrils of the two components are linked or clearly separated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 974–985, 2004  相似文献   

13.
The nonisothermal crystallization of multiwall carbon nanotube (MWNT)/isotactic polypropylene (iPP) nanocomposites was investigated. The results derived from the differential scanning calorimetry curves (onset temperature, melting point, supercooling, peak temperature, half‐time of crystallization, and enthalpy of crystallization) were compared with those of neat iPP. The data were also processed according to Ozawa's theory and Dobreva's approach. These results and X‐ray diffraction data showed that the MWNTs acted as α‐nucleating agents in iPP. Accordingly, MWNT/iPP was significantly different from neat iPP: A fibrillar morphology was observed instead of the usual spherulites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 520–527, 2003  相似文献   

14.
The effects of the addition of diblock copolymer poly(styrene‐b‐ethylene‐co‐propylene) (SEP) to isotactic polypropylene (iPP) on the morphology and mechanical properties were investigated. Phase morphologies of iPP/SEP blends up to a 70/30 weight ratio, prepared in Brabender Plasticoder, were studied with optical microscopy, scanning electron microscopy, transmission electron microscopy, and wide‐angle X‐ray diffraction. The addition of 2.5 wt % SEP caused a nucleation effect (by decreasing the crystallite and spherulite size) and randomization of the crystallites. With further SEP addition, the crystallite and spherulite size increased because of prolonged solidification and crystallization and achieved the maximum in the 80/20 iPP/SEP blend. This maximum was a result of the appearance of β spherulites and the presence of mixed α spherulites in the 80/20 iPP/SEP blend. Dispersed SEP particles were irregular and elongated clusters consisting of oval and spherical core–shell microdomains or SEP micelles. SEP clusters accommodated their shapes to interlamellar and interspherulitic regions, which enabled a well‐developed spherulitization even in the 70/30 iPP/SEP blend. The addition of SEP decreased the yield stress, elongation at yield, and Young's modulus but significantly improved the notched impact strength with respect to the strength of pure iPP at room temperature. Some theoretical models for the determination of Young's modulus of iPP/SEP blends were applied for a comparison with the experimental results. The experimental line was closest to the Takayanagi series model. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 566–580, 2001  相似文献   

15.
Blends of isotactic polypropylene and polyamide‐6/clay nanocomposites (iPP/NPA6) were prepared with an internal batch mixer. A high content of the β‐crystalline form of isotactic polypropylene (β‐iPP) was observed in the injection‐molded samples of the iPP/NPA6 blends, whereas the content of β‐iPP in the iPP/PA6 blends and the iPP/clay composite was low and similar to that of neat iPP. Quiescent melt crystallization was studied by means of wide‐angle X‐ray diffraction, differential scanning calorimetry, and polarized optical microscopy. We found that the significant β‐iPP is not formed during quiescent melt crystallization regardless of whether the sample used was the iPP/NPA6 blend or an NPA6 fiber/iPP composite. Further characterization of the injection‐molded iPP/NPA6 revealed a shear‐induced skin–core distribution of β‐iPP and the formation of β‐iPP in the iPP/NPA6 blends is related to the shear flow field during cavity‐filling. In the presence of clay, the deformation ability of the NPA6 domain is decreased, as evidenced by rheological and morphological studies. It is reasonable that the enhanced relative shear, caused by low deformability of the NPA6 domain in the iPP matrix, is responsible for β‐iPP formation in the iPP/NPA6 blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3428–3438, 2004  相似文献   

16.
在不同的共混比例、不同的结晶温度下对不相容PHBV/PS、PHBV/PMMA结晶/非晶共混体系的结晶行为做了系统的研究.研究发现当PHBV含量为75wt%时,共混体系仍然和纯PHBV一样生成环带球晶;而当PHBV含量为50wt%时,共混体系在略低于非晶组分玻璃化转变温度时呈现花瓣状的球晶形貌;当PHBV含量为25wt%时,PHBV/PS体系出现不规则的晶体形貌,而PHBV/PMMA体系在偏光显微镜下没有观察到晶体.在这种不相容共混体系中,非晶组分的分散状态以及共混比例对共混体系中PHBV环带球晶的形成起到决定性的作用,而非晶组分对PHBV球晶的片晶前端生长的影响是形成花瓣状球晶的主要原因.  相似文献   

17.
The crystallization behaviors of isotactic polypropylene (iPP) and its blends with thermoelastomers have been investigated with in situ X‐ray scattering and optic microscopy. At quiescent condition, the crystallization kinetics of iPP is not affected by the presence of elastomers; while determined by the viscosity, the differences are observed on sheared samples. With a fixed shear strain, the crystallization rate increases with increasing the shear rate. The fraction of oriented lamellar crystals in blends is higher than that in pure iPP sample, while the percentage of β phase is reduced by the presence of the elastomers. On the basis of experimental results, no direct correlation among the fraction of oriented lamellae, the percentage of β phase, and growth rate can be deduced. The evolution of the fraction of oriented lamellae supports that shear field promotes nucleation rather than growth process. Shear flow induces the formation of nuclei not only with preferring orientation but also with random orientation. The total density of nuclei, which determines the crystallization kinetics, does not control the ratio between nuclei with and without preferring orientation, which determines the fraction of oriented lamellae. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1188–1198, 2006  相似文献   

18.
The structure–property relationships of isotactic polypropylene (iPP)/styrenic block copolymer blends filled with talc were examined by optical and scanning electron microscopy, wide‐angle X‐ray diffraction, and tensile‐ and impact strength measurements. The composites were analyzed as a function of the poly(styrene‐b‐ethylene‐co‐propylene) diblock copolymer (SEP) and the poly(styrene‐b‐butadiene‐b‐styrene) triblock copolymer (SBS) content in the range from 0 to 20 vol % as elastomeric components and with 12 vol % of aminosilane surface‐treated talc as a filler. Talc crystals incorporated in the iPP matrix accommodated mostly plane‐parallel to the surface of the samples and strongly affected the crystallization process of the iPP matrix. The SBS block copolymer disoriented plane‐parallel talc crystals more significantly than the SEP block copolymer. The mechanical properties depended on the final phase morphology of the investigated iPP blends and composites and supermolecular structure of the iPP matrix because of the interactivity between their components. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1255–1264, 2004  相似文献   

19.
Varying the processing conditions of semicrystalline polymers can produce different morphologies of crystallization, which leads to different properties. There have been extensive studies of flow‐induced crystallization on isotactic polypropylene (iPP) using predominantly shear flow. A stretching method, deduced from extrusion, was introduced to study the morphological evolution of elongation‐induced shish‐kebab crystallization. Different morphologies of the resultant samples with different draw ratios (DRs) were carefully investigated and characterized via differential scanning calorimetry, polarizing light microscopy, scanning electron microscopy, atomic force microscopy, and 2D small‐angle X‐ray scattering. In addition, the degree of orientation of the samples with different DRs was also investigated using the 2D wide‐angle X‐ray scattering technique. The results indicate that the elongation‐induced morphology is strongly dependent on the effective stretching flow expressed in terms of the DR, which is defined as the ratio of rates between take‐up and the extrusion. The spherulite is dominant at low DRs, but it starts to deform along the stretching direction with increasing DR. The shish‐kebab structure in the stretched film, composed of stretched chains (shish) and layered crystalline lamellae (kebabs), increases gradually with an increase in the DR, whereas the spherulites gradually decreased. Furthermore, the overall orientation of α‐phase crystals, expressed by the Hermans orientation parameter, is also found to increase dramatically with the DR, and the rate of increase strongly depends on the DR. The different crystal morphologies are attributed to crystallization induced by different elongations of the stretched iPP films. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1223–1234, 2010  相似文献   

20.
New binary blends composed of poly(ethylene succinate) and poly(propylene succinate) or poly(ethylene succinate) and poly(butylene succinate) were prepared. Both PESu/PPSu and PESu/PBSu systems belong to semicrystalline/semicrystalline pairs. The miscibility and crystallization behavior was investigated using differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD), and polarizing light microscopy (PLM). Blends of PESu and PPSu exhibited a single composition dependent glass transition temperature over the entire range of composition, indicating that the system is miscible. The melting point depression of the high melting temperature component, PESu, was analyzed according to the Nishi‐Wang equation. A negative polymer–polymer interaction parameter was obtained, indicating that the blends are thermodynamically miscible in the melt. The two components crystallized sequentially when the blends were cooled rapidly to a low temperature. DSC traces of PESu/PBSu blends after quenching showed two distinct composition dependent glass transition temperatures between those of the neat polymers, showing that the polymers are partially miscible. The amorphous PESu/PBSu blends in the intermediate compositions showed three cold‐crystallization peaks, indicating the influence of mixing. The crystallization rates of PBSu were reduced and those of PESu were increased. WAXD showed reduced crystallinity and peak broadening in the patterns of the blends of intermediate compositions, while no spherulites could be detected by PLM. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 584–597, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号