首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of conjugated hyperbranched polymers, hyperbranched copolymers, and linear polymers containing 2‐pyran‐4‐ylidenemalononitrile (acceptor) and triphenylamine/fluorene (donor) units were synthesized and characterized by FTIR, 1H NMR, thermogravimetric analyses, differential scanning calorimetry, gel permeation chromatography, UV–visible, photoluminescence, and cyclic voltammetry measurements. All the polymers show red‐light emission in the range of 566–656 nm both in solution and in solid state. The quantum efficiency of the polymers was in the range of 56–82%. Among the six polymers synthesized, only polymers containing fluorene units show Tg and polymers based on triphenylamine not exhibit Tg. The band gap of these polymers were found to be reasonably low; hyperbranched copolymer containing fluorene unit shows lowest band gap of 2.18 eV due to the stabilization of LUMO energy level by the electron withdrawing ? CN groups. The thermal and solubility behavior of the polymers were found to be good. All the EL spectra of the devices (indium‐tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/polymer/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline/tris(8‐hydroxyquinoline)aluminum)/LiF/Al) show red‐light emission, and the device fabricated with P3 and P4 shows maximum luminance and luminous efficiency of 4104 cd m?2 and 0.55 cd Å?1 and 3696 cd m?2 and 0.47 cd Å?1, respectively, indicates that they had the best carrier balance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
We synthesized an AB2‐type monomer, 4‐{4‐[di(4‐aminophenyl)methyl]phenoxy}phthalic acid, which contained one phthalic acid group and two aminophenyl functionalities. The direct self‐polycondensation of the AB2‐type monomer in the presence of triphenylphosphite as an activator afforded a hyperbranched poly(ether imide) with a large number of terminal amino groups. This polymer was characterized with 1H NMR and IR spectroscopy. The degree of branching of the hyperbranched poly(ether imide) was approximately 56%, as determined by a combination of model compound studies and an analysis of 1H NMR spectroscopy integration data. The terminal amino groups underwent functionalization readily. The solubility and thermal properties of the resulting polymers depended on the nature of the chain end groups. In addition, the hyperbranched poly(ether imide) was grafted with polyhedral oligomeric silsesquioxane (POSS). Transmission electron microscopy analysis revealed that the grafted POSS molecules aggregated to form a nanocomposite material. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3726–3735, 2003  相似文献   

3.
Novel AB2‐type monomers such as 3,5‐bis(4‐methylolphenoxy)benzoic acid ( monomer 1 ), methyl 3,5‐bis(4‐methylolphenoxy) benzoate ( monomer 2 ), and 3,5‐bis(4‐methylolphenoxy)benzoyl chloride ( monomer 3 ) were synthesized. Solution polymerization and melt self‐polycondensation of these monomers yielded hydroxyl‐terminated hyperbranched aromatic poly(ether‐ester)s. The structure of these polymers was established using FTIR and 1H NMR spectroscopy. The molecular weights (Mw) of the polymers were found to vary from 2.0 × 103 to 1.49 × 104 depending on the polymerization techniques and the experimental conditions used. Suitable model compounds that mimic exactly the dendritic, linear, and terminal units present in the hyperbranched polymer were synthesized for the calculation of degree of branching (DB) and the values ranged from 52 to 93%. The thermal stability of the polymers was evaluated by thermogravimetric analysis, which showed no virtual weight loss up to 200 °C. The inherent viscosities of the polymers in DMF ranged from 0.010 to 0.120 dL/g. End‐group modification of the hyperbranched polymer was carried out with phenyl isocyanate, 4‐(decyloxy)benzoic acid and methyl red dye. The end‐capping groups were found to change the thermal properties of the polymers such as Tg. The optical properties of hyperbranched polymer and the dye‐capped hyperbranched polymer were investigated using ultraviolet‐absorption and fluorescence spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5414–5430, 2008  相似文献   

4.
N,N′‐disubstituted hyperbranched polyureas with methyl, benzyl, and allyl substitutents were synthesized starting from AB2 monomers based on 3,5‐diamino benzoic acid. Carbonyl azide approach, which generates isocyanate group in situ on thermal decomposition, was used for the protection of isocyanate functional groups. The N‐substituted hyperbranched polymers can be considered as the new class of internally functionalized hyperbranched polyureas wherein the substituent can function either as receptor or as a chemical entity for selective transformations as a tool to tailor the properties. The chain‐ends were also modified by attaching long chain aliphatic groups to fully realize the interior functionalization. This approach opens up a possible synthetic route wherein different functional substituents can be used to generate a library of internally functionalized hyperbranched polymers. All the hyperbranched polyureas were characterized by FTIR, 1H‐NMR, DSC, TGA, and size exclusion chromatography. Degree of branching in these N,N′‐disubstituted hyperbranched polyureas, as calculated by 1H‐NMR spectroscopy using model compounds, was found to be lower than the unsubstituted hyperbranched polyurea and is attributed to the lower reactivity of N‐substituted amines compared to that of unsubstituted amines. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5134–5145, 2004  相似文献   

5.
Two new orange red light‐emitting hyperbranched and linear polymers, poly(pyridine phenylene)s P1 and P2, were prepared by the Heck coupling reaction. In particular, an A2 + B3 approach was developed to synthesize conjugated hyperbranched polymer P2 via one‐pot polycondensation. The polymers were characterized by NMR, Fourier transform infrared, ultraviolet–visible, and elemental analysis. They showed excellent solubility in common solvents such as tetrahydrofuran, CH2Cl2, CHCl3, and N,N‐dimethylformamide and had high molecular weights (up to 6.1 × 105 and 5.8 × 105). Cyclic voltammetry studies revealed that P2 had a low‐lying lowest unoccupied molecular orbital energy level of ?3.22 eV and a highest occupied molecular orbital energy level of ?5.43 eV. The thin film of P2 emitted strong orange‐red photoluminescence at 595 nm. A double‐layer light‐emitting diode fabricated with the configuration of indium tin oxide/P2/tris(8‐hydroxy‐quinoline)aluminum/Al emitted orange‐red light at 599 nm, with a brightness of 662 cd/m2 at 7 V and a turn‐on voltage of 4.0 V; its external quantum efficiency was calculated to be 0.19% at 130.61 mA/cm2. This indicated that this new electroluminescent polymer (P2) based on 3,5‐dicyano‐2,4,6‐tristyrylpyridine could possibly be used as an orange‐red emitter in polymer light‐emitting displays. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 493–504, 2005  相似文献   

6.
The para‐fluoro‐thiol “click” reaction (PFTCR) was utilized to prepare linear and hyperbranched fluorinated poly (aryl ether‐thioether). For this purpose, 1,2‐bis(perfluorophenoxy)ethane was prepared and reacted with 1,6‐hexandithiol and trimethylolpropane tris(3‐mercaptopropionate), respectively. While hyperbranched polymers were prepared using 0.5 M concentrations of starting materials at room temperature, the linear polymer syntheses were performed at different reaction temperatures and concentrations. The resulting polymers were mainly characterized by NMR measurements and a very distinct fluorine signals regarding meta‐ and ortho‐ positions in the 19F NMR were found for both polymer topologies. In addition to NMR analyses, both linear and hyperbranched polymers were further characterized by using Fourier transform infrared spectroscopy (FT‐IR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1853–1859  相似文献   

7.
A triamine monomer, 1,3,5‐tris(4‐aminophenoxy)benzene (TAPOB), was synthesized from phloroglucinol and 4‐chloronitrobenzene, and it was successfully polymerized into soluble hyperbranched polyimides (HB PIs) with commercially available dianhydrides: 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA). Different monomer addition methods and different monomer molar ratios resulted in HB PIs with amino or anhydride end groups. From 1H NMR spectra, the degrees of branching of the amino‐terminated polymers were estimated to be 0.65, 0.62, and 0.67 for 6FDA–TAPOB, ODPA–TAPOB, and BTDA–TAPOB, respectively. All polymers showed good thermal properties with 10% weight‐loss temperatures (T10's) above 505 °C and glass‐transition temperatures (Tg's) of 208–282 °C for various dianhydrides. The anhydride‐terminated HB PIs showed lower T10 and Tg values than their amino‐terminated counterparts. The chemical conversion of the terminal amino or anhydride groups of the 6FDA‐based polyimides into an aromatic imido structure improved their thermal stability, decreased their Tg, and improved their solubility. The HB PIs had moderate molecular weights with broad distributions. The 6FDA‐based HB PIs exhibited good solubility even in common low‐boiling‐point solvents such as chloroform, tetrahydrofuran, and acetone. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3804–3814, 2002  相似文献   

8.
A phenylquinoxaline (PQ) AB monomer mixture was treated with monofunctional and difunctional end‐capping agents and with and without a coupling agent to afford phenylethynyl‐terminated linear PQ oligomers. The resulting PQ oligomers were soluble in common organic solvents and had intrinsic viscosities (IVs) of 0.21–0.30 dL/g. The glass‐transition temperature (Tg) of the diphenylethynyl‐end‐capped PQ oligomer on both sides increased the most, from 215 °C (before curing) to 251 °C (after curing). The PQ AB2 monomer, which acted as both a coupling agent and a monomer for the hyperbranched polymer, was treated with an AB monomer and end‐capping agents to afford phenylethynyl‐terminated hyperbranched polyphenylquinoxalines (PPQs). They were also soluble in common organic solvents, had IVs of 1.00–1.65 dL/g and Tg's of 251–253 °C, and underwent exothermic cure with maxima around 412–442 °C. The Tg's of the cured hyperbranched PPQs ranged from 258 to 261 °C, depending on the number of phenylethynyl groups on the surface. After further curing, they displayed a Tg of 316 °C in one sample and turned into a fully crosslinked network. The dynamic melt viscosities of a linear oligomer (IV = 0.21 dL/g), a hyperbranched sample (IV = 1.00 dL/g), and a linear reference PPQ (IV = 1.29 dL/g) were compared with respect to the processing temperature. The PQ oligomer and hyperbranched PPQ had low melt viscosities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6318–6330, 2004  相似文献   

9.
Starting from 3,5‐diamino benzoic acid, 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzyl ether, an AB2‐type blocked isocyanate monomer with flexible ether group, and 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzoate, an AB2‐type blocked isocyanate monomer with ester group, were synthesized for the first time. Using the same starting compound, 3,5‐bis{(benzoxycarbonyl)imino}benzylalcohol, an AB2‐type blocked isocyanate monomer, was synthesized through a highly efficient short‐cut route. Step‐growth polymerization of these monomers at individually optimized experimental conditions results in the formation of hyperbranched polyurethanes with and without ether and ester groups. Copolymerizations of these monomers with functionally similar AB monomers were also carried out. The molecular weights of the polymers were determined using GPC and the values (Mw) were found to vary from 1.5 × 104 to 1.2 × 106. While hyperbranched polyurethanes having no ether or ester group were found to be thermally stable up to 217 °C, hyperbranched poly(ether–urethane)s and poly(ester–urethane)s were found to be thermally stable up to 245 and 300 °C, respectively. Glass transition temperature (Tg) of polyurethane was reduced significantly when introducing ether groups into the polymer chain, whereas Tg was not observed even up to 250 °C in the case of poly(ester–urethane). Hyperbranched polyurethanes derived from all the three different AB2 monomers were soluble in highly polar solvents and the copolymers showed improved solubility. Polyethylene glycol monomethyl ether of molecular weight 550 and decanol were used as end‐capping groups, which were seen to affect the thermal, solution, and solubility properties of polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3877–3893, 2007  相似文献   

10.
New aromatic diyne monomers of 1,4‐diethynyl‐2,5‐(dihexyloxy)benzene ( 1 ), 1,6‐diethynyl‐2‐(hexyloxy)naphthalene ( 2 ), and 9,9‐bis(4‐ethynylphenyl)fluorene ( 3 ) are synthesized. Their homopolymerizations and copolymerizations with 1‐octyne ( 4 ) or phenylacetylene ( 5 ) are effected by TaBr5–Ph4Sn and CpCo(CO)2, giving soluble hyperbranched polyarylenes with high molecular weights (Mw up to ~ 2.9 × 105) in high yields (up to 99%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, UV, PL, and TGA analysis. The polymers show excellent thermal stability (Td > 400 °C) and carbonize when pyrolyzed at 900 °C. Upon photoexcitation, the polymers emit deep blue light in the vicinity of ~400 nm with fluorescence quantum yields up to 92%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4249–4263, 2007  相似文献   

11.
The anionic ring‐opening polymerization of oxetanes containing hydroxyl groups was carried out with potassium tert‐butoxide as an initiator in the presence of 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding multifunctional hyperbranched polymers: poly(3‐ethyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 2200–4100 in 83–95% yields, and poly(3‐methyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 4600–5200 in 70–95% yields. The synthesized poly(3‐ethyl‐3‐hydroxymethyloxetane)s and poly(3‐methyl‐3‐hydroxymethyloxetane)s were hyperbranched polyethers containing an oxetane moiety and many hydroxy groups at the ends. The postpolymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane)s was performed in the presence of potassium tert‐butoxide and 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding polymers with higher molecular weights in good yields. The cationic polymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane) derivatives was carried out with boron trifluoride etherate as an initiator and was followed by alkaline hydrolysis; this yielded a new branched polymer, a poly(hyperbranched polyether), with many pendant hydroxy groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3739–3750, 2004  相似文献   

12.
Here we report the preparation of PEG‐based thermoresponsive hyperbranched polymers via a facile in situ reversible addition‐fragmentation chain transfer (RAFT) copolymerization using bis(thiobenzoyl) disulphide to form 2‐cyanoprop‐2‐yl dithiobenzoate in situ. This novel one‐pot in situ RAFT approach was studied firstly using methyl methacrylate (MMA) monomer, then was used to prepare thermoresponsive hyperbranched polymers by copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, Mn = 475), poly(propylene glycol) methacrylate (PPGMA, Mn = 375) and up to 30 % of ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resultant PEGMEMA‐PPGMA‐EGDMA copolymers from in situ RAFT were characterized by Gel Permeation Chromatography (GPC) and 1H‐NMR analysis. The results confirmed the copolymers with multiple methacrylate groups and hyperbranched structure as well as RAFT functional residues. These water‐soluble copolymers with tailored compositions demonstrated tuneable lower critical solution temperature (LCST) from 22 °C to 32 °C. The phase transition temperature can be further altered by post functionalization via aminolysis of RAFT agent residues in polymer chains. Moreover, it was demonstrated by rheological studies and particle size measurements that these copolymers can form either micro‐ or macro photocrosslinked gels at suitable concentrations due to the presence of multiple methacrylate groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3751–3761  相似文献   

13.
Rotaxane‐type hyperbranched polymers are synthesized for the first time from A2B type semi‐rotaxane monomers formed in situ via complexation of bis(m‐phenylene)‐32‐crown‐10 dimethanol ( 1 ) and two paraquat ωn‐alkylenecarboxylic acid derivatives with tris(p‐t‐butylphenyl)methylphenylalkylene stoppers ( 8 and 9) . Rotaxane and taco complexes exist in solutions of the hyperbranched polyesters in CD3CN/CDCl3 as confirmed by NMR spectroscopy, but the taco complexes, which derive from non‐rotaxanated paraquat units, disappear in DMSO‐d6. NMR spectroscopy indicates the portion of rotaxanes strongly interlocked by the environment (inner rotaxanes) is larger in HP1?9 , which has longer alkylene spacers, perhaps indicating a higher degree of polymerization. The molecular size increases upon formation of the hyperbranched polymers are confirmed by dynamic light scattering and by viscometry. As with covalent hyperbranched polymers a number of potential applications exist; the unique mechanically linked character and the presence of uncomplexed host and guest moieties foreshadow the use of such systems for their responses to external stimuli with the added benefit of providing molecular recognition sites useful as delivery vehicles. Use of other host‐guest motifs to form the semirotaxane A2B monomers is possible and complementary systems with higher binding constants will enable efficient syntheses of high molecular weight, mechanically linked hyperbranched polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1647–1658  相似文献   

14.
Two novel series of ambipolar and near‐infrared electrochromic aromatic polyamides with electroactive anthraquinone group were synthesized from new aromatic diamines, 2‐(bis(4‐aminophenyl)amino)anthracene‐9,10‐dione and 2‐(4‐(bis(4‐aminophenyl)amino)phenoxy)anthracene‐9,10‐dione, respectively, via low‐temperature solution polycondensation reaction. These polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures (Tg) (285–360 °C). Electrochemical studies of these electrochromic polyamides revealed ambipolar behavior with reversible redox couples and high contrast ratio both in the visible range and near‐infrared region. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
A series of light‐emitting hyperbranched poly(arylene ethynylene)s (HB‐PAEs) were prepared by the Sonogashira coupling from bisethynyl of carbazole, fluorene, or dialkoxybenzenes (A2 type) and tris(4‐iodophenyl)amine (B3 type). For comparison, two linear polymers (L‐PAEs) of the HB analogs were also synthesized. The polymers were characterized by Fourier transform infrared, NMR, and GPC. The HB polymers showed excellent solubility in chloroform, THF, and chlorobenzene when compared with their linear analogs. The number‐average molecular weight (Mn) of the polymers determined from GPC was found to be in the range of 18,600–34,200. The polymers were thermally stable up to 298–330 °C with only 5% weight loss. The absorption maxima of the polymers were between 354 and 411 nm with optical band gap in the range of 2.5–2.9 eV. The HB polymers were found to be highly fluorescent with photoluminescence quantum yields around 33–42%. The highest occupied molecular orbital energy levels of the polymers calculated from onset oxidation potentials were found to be in the range from ?5.83 to ?6.20 eV. Electroluminescence (EL) properties of three HB‐PAEs and one L‐PAE were investigated with device configuration ITO/PEDOT:PSS/Polymer/LiF/Al. The EL maxima of HB‐PAEs were found to be in the range of 507–558 nm with turn‐on voltages around 7.5–10 V and maximum brightness values of 316–490 cd/m2. At the same time, linear analog of one HB‐PAE was found to show a maximum brightness of 300 cd/m2 at a turn‐on voltage of 8.2 V. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
A series of blue light‐emitting hyperbranched polymers comprising poly(fluorene‐co‐dibenzothiophene‐S,S‐dioxide) as the branch and benzene, triphenylamine, or triphenyltriazine as the core were synthesized by an “A2 + A2' + B3” approach of Suzuki polymerization, respectively. All resulted copolymers exhibited quite comparable thermal properties with the glass transition temperatures in the range of 59–68 °C and relatively high decomposition temperatures over 420 °C. Photoluminescent spectra exhibited slight variation with the molar ratio of the dibenzothiophene‐S,S‐dioxide unit and the size of the core units. Polymer light‐emitting devices demonstrated blue emission with excellent stability of electroluminescence. Copolymers based on smaller core units of benzene and triphenylamine exhibited enhanced device performances regarding to that of triphenyltriazine. With the device configuration of ITO/PEDOT:PSS/polymer/CsF/Al, a maximum luminous efficiency of 4.5 cd A?1 was obtained with Commission Internationale de L'.Eclairage (CIE) coordinates of (0.16, 0.19) for the copolymer PFSO15B. These results indicated that hyperbranched structure can be a promising strategy to attain spectrally stable blue‐light‐emitting polymers with high efficiency. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1043–1051  相似文献   

17.
A new method for the synthesis of hyperbranched polymers involving the use of ABx macromonomers containing linear units have been investigated. Two types of novel hyperbranched polyurethanes have been synthesized by a one‐pot approach. The structures of monomers and polymers were characterized by elemental analysis, 1H NMR, 13C NMR, Fourier transform infrared spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The hyperbranched polymers have been proven to be extremely soluble in a wide range of solvents. Polymer electrolytes were prepared with hyperbranched polymer, linear polymer as the host, and lithium perchlorate (LiClO4) as the ion source. Analysis of the isotherm conductivity dependence of the ion concentration indicated that these hyperbranched polymers could function as a “solvent” for the lithium salt. The conductivity increased with the increasing concentration of hyperbranched polymers in the host polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 344–350, 2002  相似文献   

18.
Compared with linear polymers, more factors may affect the glass‐transition temperature (Tg) of a hyperbranched structure, for instance, the contents of end groups, the chemical properties of end groups, branching junctions, and the compactness of a hyperbranched structure. Tg's decrease with increasing content of end‐group free volumes, whereas they increase with increasing polarity of end groups, junction density, or compactness of a hyperbranched structure. However, end‐group free volumes are often a prevailing factor according to the literature. In this work, chain‐end, free‐volume theory was extended for predicting the relations of Tg to conversion (X) and molecular weight (M) in hyperbranched polymers obtained through one‐pot approaches of either polycondensation or self‐condensing vinyl polymerization. The theoretical relations of polymerization degrees to monomer conversions in developing processes of hyperbranched structures reported in the literature were applied in the extended model, and some interesting results were obtained. Tg's of hyperbranched polymers showed a nonlinear relation to reciprocal molecular weight, which differed from the linear relation observed in linear polymers. Tg values decreased with increasing molecular weight in the low‐molecular‐weight range; however, they increased with increasing molecular weight in the high‐molecular‐weight range. Tg values decreased with increasing log M and then turned to a constant value in the high‐molecular‐weight range. The plot of Tg versus 1/M or log M for hyperbranched polymers may exhibit intersecting straight‐line behaviors. The intersection or transition does not result from entanglements that account for such intersections in linear polymers but from a nonlinear feature in hyperbranched polymers according to chain‐end, free‐volume theory. However, the conclusions obtained in this work cannot be extended to dendrimers because after the third generation, the end‐group extents of a dendrimer decrease with molecular weight. Thus, it is very possible for a dendrimer that Tg increases with 1/M before the third generation; however, it decreases with 1/M after the third generation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1235–1242, 2004  相似文献   

19.
A novel series of soluble hyperbranched interrupted π‐conjugated polymers (HICPs) based on complicated 9,9‐diarylfluorenes (CDAFs) branching core and end‐capped with high carrier‐mobility pyrene moieties were synthesized via the “A2 + A′2 + B3” type Suzuki coupling condensation. The new polymer architecture improves the spectrum stability than the corresponding linear and hyperbranched polymers in PLEDs. Besides, it overcomes the drawback of high driving voltage of common interrupted π‐conjugated polymers. CDAF1 exhibits excellent thermal and morphological stability with a decomposition temperature (Td) higher than 445 °C and a glass transition temperature (Tg) up to 128 °C. No obvious low‐energy green emission band at 520 nm was observed under extreme thermal annealing conditions in air at 200 °C for 12 h. The CDAF1 device shows stable blue emission with the peak at 422 and 447 nm. The Commission International d'Eclairage (CIE) 1931 coordinates is (0.18, 0.16) and the brightness reaches 1051 cd/m2 at 15.7 V. White PLED based on CDAF1/MEH‐PPV blends exhibits a low turn‐on voltage of 4.8 V with voltage‐independent CIE of (0.32, 0.32). Molecular simulations were used to investigate the conformation and interchain interaction. HICPs based on CDAFs tethered with high‐mobility moieties are promising stable blue and host materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6451–6462, 2009  相似文献   

20.
Two UV‐curable hyperbranched poly(siloxysilane)s ( I and III ) containing vinyl and allyl end groups were synthesized via polyhydrosilylation with methylbis(methylethylvinylsiloxy)silane and methylbis(dimethylallylsiloxy)silane monomers. A cationic UV‐curable hyperbranched polymer ( II‐Ep ) with epoxy end groups was prepared via the hydrosilylation of hyperbranched polymer II with Si? H terminated groups and glycidyl methacrylate, and II was also obtained via the polyhydrosilylation of AB2‐type monomer methylvinylbis(methylethylsiloxy)silane. All hydrosilylation reactions were catalyzed by Pt/C or chloroplatinic acid. Three AB2‐type monomers were synthesized via the hydrolysis of functional chlorosilane, which was prepared with Grignard reagents and dichlorosilane. The molecular structures of the polymers were characterized with 1H NMR, Fourier transform infrared, and gel permeation chromatography, and the UV‐curing behaviors of the polymers under different atmospheres and with different photoaccelerators were also investigated. The thermostability of uncured and cured polymers was examined with thermogravimetric analysis, and the data indicated that the orders of the onset decomposition temperatures for the cured polymers and the residue weights were as follows: III (380 °C) > I (320 °C) > II‐Ep (280 °C) and I (70.4%) > III (64.1%) > II‐Ep (60.9%), respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1883–1894, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号