首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photocrosslinkable systems with thermally cleavable properties based on blends of poly(vinyl phenol) (PVP) and diepoxides were investigated. Thermally cleavable diepoxides as crosslinkers were prepared and characterized. As a thermally cleavable linkage, a tertiary ester moiety was incorporated into the crosslinker molecule. PVP/crosslinker blended films containing photoacid generators (PAGs) became insoluble in solvents after UV irradiation and subsequent post‐exposure‐bake (PEB) treatment. With a rise in the PEB temperature, the insoluble fraction of the irradiated films increased, passed through a maximum value, decreased, and increased again at elevated baking temperatures. The insolubilization profiles of the irradiated films were complicated and strongly dependent on the type of PAG used, the structure of the crosslinkers, and the PVP/crosslinker ratio. A mechanism for the thermal degradation was studied with Fourier transform infrared spectroscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3055–3062, 2002  相似文献   

2.
A polymeric photobase generator containing oxime–urethane groups was prepared by copolymerization of methyl methacrylate and methacryloxyethyl benzophenoneoxime urethane, and its photo and thermal crosslinking reaction after irradiation was examined from the measurement of UV and IR absorption spectral changes, insoluble fraction, and molecular weight changes. The photo‐crosslinking reaction of the copolymer film was more efficient when irradiations were carried out with 310 nm UV light in the presence of benzophenone than with 254 nm UV light without the addition of benzophenone. The crosslinking reaction increased after postexposure baking (PEB), and this thermal crosslinking reaction mechanism was studied from the identification of the photolysis products of a model compound, benzophenoneoxime phenylurethane, by a high‐performance liquid chromatography. The results indicate that the thermal crosslinking reaction of the copolymer after PEB is due to the formation of urea‐type chemical bonds. Resist properties of the copolymer were examined from the measurement of normalized thickness and micropattern development. A negative tone image with a resolution of 2 μm was obtained with this copolymer, having a sensitivity (D) of 1200 mJ/cm2 and contrast (γn) of 1.31, when irradiation was carried out with 310 nm UV light in the presence of benzophenone following chloroform development. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 975–984, 2004  相似文献   

3.
The photo-crosslinking reaction of a polymeric photobase generator containing phthalimido carbamate (PC) groups was studied and applied to the formation of a negative type micropattern. The copolymer containing PC groups was prepared through the polymerization of methyl methacrylate and phthalimido methacryloxyethylcarbamate (PMC). The photochemical and cross-linking reaction of the copolymer film were studied using the UV and IR absorption spectral changes along with the normalized thickness measurements upon irradiation. The copolymer film was effectively cross-linked upon irradiation with 254 nm UV light, and the cross-linking reaction progressed further with increasing irradiation dose and the amount of PMC units in the copolymer. The photochemical formation of the isocyanato groups was evidenced by comparing the IR absorption spectral changes of the exposed and masked copolymer film. The photo-crosslinking reaction of the copolymer was further studied by using a model compound. The results indicated that the cross-linking reaction occurred because of the formation of urea-type chemical bonds, which were produced through the reaction of the photochemically produced isocyanato and amino groups in the copolymer. A negative micropattern was obtained by using the photo-crosslinking reaction.  相似文献   

4.
We report a Secondary Electron (SE) contrast modulation observed in scanning electron microscope photographs of the cross‐section of SU‐8 photoresist films exposed holographically. The modulation occurs along the whole depth of the sample and its contrast disappears when the samples are submitted to the post exposure bake (PEB). Diffraction and atomic force microscopy measurements of the samples were performed before and after PEB to investigate this modulation. The results indicate that this SE emission contrast modulation comes from the spatial chemical modulation generated by the photolysis during the exposure of the SU‐8 films. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 226–230, 2010  相似文献   

5.
Copolymers containing oxime‐urethane groups were prepared by the copolymerization of methyl methacrylate and benzophenoneoximinocarbonylaminoethyl methacrylate (BCM), and their photochemical properties were examined from the UV and IR absorption spectral changes. The decomposed fraction of oxime‐urethane groups in the copolymer increased with irradiation time, but it decreased with the content of BCM units in the copolymer. Changes of the surface properties of the copolymer film on irradiation were studied by measurements of the contact angle and dyeing with an acid dye. The surface of the copolymer film changed to become more hydrophilic upon irradiation with 254 nm of UV light. After the irradiated copolymer films were treated with HCl or methanol, changes of the contact angle of water on irradiation were compared. The copolymer film was dyed by acid dyes after treatment of the irradiated film with HCl. The degree of dyeing increased with irradiation time and BCM units in the copolymer, but it was unaffected by the film thickness. Various colors were developed on the irradiated area depending on the acid dye as the developer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1200–1207, 2002  相似文献   

6.
The effect of electron irradiation on poly(vinylidene fluoride‐trifluoroethylene) (56/44 mol %) copolymers was studied with dielectric constant measurements, differential scanning calorimetry (DSC), X‐ray diffraction, thermally stimulated depolarization current (TSDC) spectroscopy, and polarization hysteresis loops. The dielectric relaxation peaks, obeying the Vogel–Fulcher law, indicated that the copolymers were transformed from a normal ferroelectric to a relaxor ferroelectric. The X‐ray and DSC results showed that both the crystalline and polar ordering decreased after irradiation, indicating a partial recovery from trans–gauche bonds to local trans bonds (polar ordering). Moreover, the peak temperature decreased with the irradiation dose in the TSDC spectra; this demonstrated fewer dipoles and crystalline regions in the irradiated copolymer films during the ferroelectric–paraelectric transition and was consistent with polarization hysteresis loop measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1099–1105, 2004  相似文献   

7.
Solvent‐free isothermal tuning of viscoelasticity of polymer materials is important for an emerging photochemical molding technology and photoreversible adhesives. In this study we designed a four‐armed star‐shaped poly(butyl acrylate, BA) oligomer having four coumarin end groups. The irradiation of UV at the wavelength of 365 nm (UV365) to the viscous poly(BA) oligomer under a solvent‐free condition produced a solid network material along with the progress of dimerization reaction with coumarin end groups. The subsequent irradiation of UV at the wavelength of 254 nm (UV254) caused dimer dissociation reaction to attain change in the mixing degree of star and network architectures in the material. Moreover, viscoelasticity of the network material was tunable by repetitive UV365 and UV254 irradiations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 9–15  相似文献   

8.
Copolymers bearing photoacid generating groups and/or photobase generating groups were dyed after UV irradiation with a dye bath containing both an acid dye and a basic dye. Acetophenone O‐acryloyloxime (AAPO) was used as a monomer bearing acyloxyimino (AOI) group that generates a primary amino group upon irradiation, which is followed by hydrolysis. Phenacylsulfonylstyrene (PSSt) and 1,2,3,4‐tetrahydronaphthylideneamino p‐styrenesulfonate (NISS) were chosen as monomers having β‐keto sulfone (β‐KS) and iminosulfonate (IS) groups, respectively, which yielded acid groups when irradiated. Copolymers of AAPO and methyl methacrylate (MMA) were dyed with only the acid dye, and those of PSSt or NISS were dyed with only the basic dye after irradiation. AAPO‐PSSt‐MMA films became dyeable with the acid dye when irradiated for a short time and with the basic dye with further irradiation. However, AAPO‐NISS‐MMA copolymers showed the reverse dyeing behavior. IR spectra revealed that AOI groups were photochemically decomposed prior to the β‐KS groups for AAPO‐PSSt‐MMA, and AOI and IS groups decomposed simultaneously for AAPO‐NISS‐MMA. These results suggested the possibility of adsorption of different ionic dyes on the films by a change of irradiation time; in fact, color patterns could be obtained in a single staining process using the dye bath. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3043–3051, 2000  相似文献   

9.
A bifunctional compound [(4‐isocyanato‐4′(3,3‐dimethyl ‐2,4‐dioxo‐acetidino)diphenylmethane] (MIA) has been used as a building block for the synthesis of novel polyurea/malonamide dendrons. This is based on selectively sequential addition reactions of amines to isocyanato‐azetidine‐2,4‐diones. After incorporation of the MIA onto the growing dendrons, rapid entry into polyurea/malonamide dendrons was achieved via a convergent route with the processing advantages of easy purification, high yield, and rapid synthesis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 682–688, 2005  相似文献   

10.
Novel multifunctional photopolymers with both pendant epoxy groups and phenacyl ester groups were synthesized by the one‐pot method for the reaction of poly(methacrylic acid) with epibromohydrin; this was followed by a reaction with phenacylbromide with 1,8‐diazabicyclo‐[5.4.0]undecene‐7 as a condensation reagent. These esterification reactions proceeded smoothly and quantitatively under mild conditions. Moreover, the photochemical reactions of the resulting polymers were evaluated by UV and IR spectroscopy. The pendant phenacyl ester groups were photocleaved to give corresponding carboxyl groups, and then the produced carboxyl groups reacted with pendant epoxy groups. Furthermore, the baking process promoted a crosslinking reaction because of the addition reaction of epoxy groups with carboxyl groups after irradiation. It was also proven that the photochemical reactivity of the resulting polymers was affected by the structure of the phenacyl ester group. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 530–538, 2001  相似文献   

11.
A series of poly[oxy(4‐n‐alkyl‐3,5‐benzoate)oxy‐1,4‐phenylenediacryloyl]s (PPDA‐CnBZ polymers) with high molecular weights was synthesized. These polymers exhibit excellent solubility in some common organic solvents and produce good quality films using conventional spin‐casting and drying processes. The polymers are thermally stable up to 357–362 °C in a nitrogen atmosphere; their glass transition temperatures are greater than 121 °C. The photoreactions and photoalignments of the polymers were investigated using ultraviolet‐visible and infrared spectroscopy, and their liquid crystal (LC) alignment properties were examined. The phenylenediacrylate (PDA) chromophores in the polyesters were found to mainly undergo photocyclization upon ultraviolet light irradiation. Irradiation of the polyester films with linearly polarized ultraviolet light (LPUVL) induces preferential orientation of the polymer main chains, while the unreacted PDA chromophores are aligned along the direction perpendicular to the electric vector of the LPUVL. All the films irradiated with LPUVL were found to align LCs in a direction perpendicular to the electric vector of the LPUVL. Moreover, these LC alignments persisted even on irradiated films annealed at temperatures up to 210 °C, which is much higher than the glass transition temperatures of the polyesters. These LC alignment characteristics are due to the anisotropic interactions of the LC molecules with the oriented polymer chains and with the unreacted PDA chromophores. LC alignments on the polyester film surfaces have homeotropic to homogeneous characteristics, depending on the length of the n‐alkyl side group, providing strong evidence that the n‐alkyl side groups of the polyesters play a critical role in determining the pretilt angles of the LCs. The LC pretilt angles were also found to be influenced by the thermal annealing history of the irradiated films. In summary, the excellent properties of the PPDA‐CnBZ polymers make them promising candidate materials for use as LC alignment layers in advanced LC display devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1322–1334, 2004  相似文献   

12.
In this study, a series of urea‐derivatives of 4‐aminopyridine (4AP) were evaluated as thermally latent initiators for the anionic ring‐opening polymerization of diglycidyl ether of bisphenol A (DGEBA). The urea‐derivatives were synthesized by the reactions of 4AP with the corresponding iso(thio)cyanates (phenyl isocyanate, tert‐butyl isocyanate, methylene diphenyl diisocyanate, and phenyl isothiocyanate). The ability of the urea‐derivatives as latent initiators was investigated with differential scanning calorimetry (DSC): Upon heating formulations comprised of DGEBA and the urea‐derivatives in a heating rate at 10 °C/min, the resulting DSC profiles indicated exothermic peaks to confirm that DGEBA underwent the polymerization efficiently. The corresponding DSC‐peak top temperatures (Tpeak top) was higher than that observed for the formulation comprised of DGEBA and pristine 4AP, to clarify that the urea are useful initiators with thermal latency. A possible mechanism for the initiation step involves the thermal dissociation of the urea into 4AP and the corresponding isocyanates. 4AP thus generated readily initiated the ring‐opening polymerization of epoxide. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2518–2522  相似文献   

13.
A simple and generally applicable new synthetic method to prepare second‐order nonlinear optical (NLO) polyimides has been developed. In this approach, side‐chain‐substituted polyimides were synthesized via isocyanato‐terminated prepolymers prepared directly from NLO chromophore‐containing diols Disperse Red 19. Using this technique, the tedious synthesis of the classical diamine monomers and harsh imidization process associated with polyamic acid prepolymers are avoided. The resulting polymers possessed good solubility and high glass‐transition (171–211 °C) and thermal‐decomposition temperatures. The polymers also exhibited excellent film‐forming properties, and good optical‐quality films were easily obtained by spin coating. The second‐order NLO activities of the polymer films were also studied, and several factors that might determine the growth of the second‐order NLO activity were proposed. The polymers obtained exhibit a large second‐order NLO activity (34–52.5 pm/V at 1064 nm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2189–2195, 2001  相似文献   

14.
Polysilsesquioxanes were prepared through the acid‐catalyzed hydrolytic polycondensation of triethoxy(methyl)silane, triisopropoxy(methyl)silane, or triisobutoxy(methyl)silane and subjected to dip coating to form coating films. The film formation depended on the polarity and crystallinity of the substrate, and a correlation was found between the substrate and polysilsesquioxane solubility parameters. When the coating film was heated, thermal condensation occurred at about 500 °C between hydroxy groups or between hydroxy and alkoxy groups. The methyl group attached to silicon decomposed, and siloxane bonding formed at about 800 °C. The adhesion and hardness of the coating films were evaluated with the Japanese Industrial Standard K5400 protocol, and they increased with increases in the heating time and heat‐treatment temperature. The refractive index of the coating films decreased when the heat‐treatment temperature was increased to 500 °C because of the combustion of organic groups. In contrast, the surface electric resistance increased with the heat‐treatment temperature up to 500 °C. The dielectric constant was 2.6–2.8 and decreased with an increases in the molecular weight and the degree of crosslinking of the polysilsesquioxanes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3676–3684, 2004  相似文献   

15.
Photoalignment layers comprising Polymer 1 were prepared using linearly polarized UV‐irradiation for chloroform‐vapor annealing of π‐conjugated oligomer films, both processes conducted at room temperature. The resultant uniaxially oriented monodomain films exhibited S = 0.74 (at Pr = 0.90) and 0.82 (at Pr = 0.95) in OF and OF2T films, respectively, apparently limited by film dewetting in comparison to S = 0.82 ± 0.01 from thermal annealing on rubbed polyimide alignment and Polymer 1 photoalignment layers. The time to arrive at maximum S values varied from 5–10 s to 6–8 min on rubbed polyimide alignment layers and Polymer 1 photoalignment layer, respectively, because of favorable π–π interactions enhanced by rubbing. In contrast, PF2T could not be oriented on either type of alignment layers after annealing under saturated chloroform vapor up to 14 h. Annealing of an OF2T film under saturated chlorobenzene vapor at room temperature permitted lyotropic nematic mesomorphism to be observed in situ, which is equivalent to thermotropic nematic mesomorphism as the driving force behind thermal annealing. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

16.
Novel polystyrene derivatives comprising [1‐(3‐isopropenyl‐phenyl)‐1‐methyl‐ethyl]‐carbamate in the side chain were synthesized as photoreactive copolymers. Poly(4‐vinylphenol) was made to react with 1‐(1‐isocyanato‐1‐methyl‐ethyl)‐3‐isopropenyl‐benzene (m‐TMI) and the unreacted hydroxyl groups were protected with acetyl chloride. The copolymers are highly sensitive to the radical photoinitiators that can be activated by irradiation of UV light (λ = 300–365 nm). FTIR spectroscopy was employed to monitor the structural changes in the copolymers exposed to UV irradiation. The dielectric properties of the copolymers were investigated by measuring the capacitance and calculating the permittivity as a function of frequency, along with the IV characteristics. Their properties were compared with those of thermally crosslinkable poly(4‐vinylphenol) blended with poly(melamine‐co‐formaldehyde), which is frequently used as a dielectric layer in organic field‐effect transistors (OFETs). No significant dielectric dispersion was observed in the frequency range of 1 kHz–1 MHz. The dielectric constant was determined to be in the range of 4.2–6.0, which offers a potential for the application of these copolymers to OFET gate insulators. These soluble dielectrics exhibit good film uniformity and can also be patterned using a standard photolithographic technique. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1710–1718, 2008  相似文献   

17.
We designed and synthesized novel UV‐curable multifunctional acrylate monomers with perfluorinated aromatic units and their copolymers. The UV‐curable multifunctional acrylate monomers with perfluorinated aromatic units were synthesized as follows. Perfluorinated aromatic methylmethane derivatives were prepared through the reaction of pentaerythritol with hexafluorobenzene and decafluorobiphenyl in the presence of sodium hydride. They were sequentially substituted with 2,2,3,3,4,4,5,5‐octafluoro‐6‐(tetrahydropyran‐2‐yloxy)‐hexan‐1‐ol, and this yielded hydroxy‐functional compounds after tetrahydropyran deprotection. Finally, the reaction of the resultant hydroxy compounds with acryloyl chloride generated the perfluorinated multifunctional acrylate monomers in high yields of greater than 85%. The novel photocrosslinked and perfluorinated copolyacrylates, obtained after the UV and thermal curing of these monomers, satisfied the material requirements for photonic devices. Most of these copolymers were thermally stable over 370 °C, and their glass‐transition temperatures were not detected because of their highly crosslinked nature. The refractive indices of the copolymers ranged from 1.410 to 1.441. The refractive indices of the photocrosslinked and perfluorinated copolyacrylates were easily tuned by the variation of the copolymer composition. Some of these copolymers exhibited a birefringence of less than 0.0003. This was much lower than the birefringence of fluorinated polyacrylate‐based materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6375–6383, 2004  相似文献   

18.
1,4‐Phenylene bis(acrylic acid) is a thermally stable diacid, which can be incorporated into polyesters. The phenylene bisacrylate structural units undergo rapid photochemical reaction in the solid state to form crosslinks. This constitutes a feasible approach to polyesters, which can be photochemically thermoset after fabrication as films and fibers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2167–2176, 2000  相似文献   

19.
The influence of irradiation and grafting on the crystallinity of three base polymers has been investigated with differential scanning calorimetry. Grafting has the largest effect on the base polymer crystallinity and results in a reduction of the crystallinity. The thermal degradation of the base polymers and grafted films has been investigated with thermogravimetric analysis. The extent of the fluorination of the base polymer, the irradiation method, and the graft level all influence the thermal degradation and its activation energy. It is proposed that the variation of the chain lengths of the grafted polystyrene chains is actually a primary underlying factor responsible for the influence of these various parameters on the degradation process. The first results of a comparative thermal analysis of some fuel‐cell membranes are also presented, and the promise and shortcomings of this method are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2612–2624, 2004  相似文献   

20.
Two photosensitive chiral liquid crystalline azobenzene‐containing polymethacrylates having different length of flexible spacer connecting chromophores with backbone were synthesized and their phase behavior and photo‐optical properties were studied. Both polymers consist of lateral methyl substituents in ortho‐position of azobenzene chromophores providing high photosensitivity even in red spectral region as well as high thermal stability of photoinduced Z‐form of azobenzene chromophores. It is shown, that smectic phase (SmA*) formation in films of polymer with longer spacer predetermines its quite unusual spectral response to UV and subsequent visible light actions. The SmA* phase promotes spontaneous homeotropic alignment of azobenzene chromophores in polymer films. UV‐irradiation induces not only E‐Z isomerization but also results in disruption of homeotropic alignment, whereas subsequent visible light action enables to obtain films with the low degree of chromophores orientation. The photo‐orientation phenomena under the action of polarized light of different wavelength on polymer films were studied. The possibility of using red polarized light of moderate intensity for optical photorecording on polymer films is demonstrated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2962–2970  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号