首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two PPV‐based bipolar polymers containing 1,3,4‐oxadiazole pendant groups were synthesized via the Gilch polymerization reaction for use in light‐emitting diodes (LEDs). The resulting polymers were characterized using 1H and 13C NMR, elemental analysis, DSC, and TGA. These polymers were found to be soluble in common organic solvents and are easily spin‐coated onto glass substrates, producing high optical quality thin films without defects. The electro‐optical properties of ITO/PEDOT/polymer/Al devices based on these polymers were investigated using UV‐visible, PL, and EL spectroscopy. The turn‐on voltages of the OC1Oxa‐PPV and OC10Oxa‐PPV devices were found to be 8.0 V. The maximum brightness and luminescence efficiency of the OC1Oxa‐PPV device were found to be 544 cd/m2 at 19 V and 0.15 cd/A, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1098–1110, 2008  相似文献   

2.
Substituent‐induced electroluminescence polymers—poly[2‐(2‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(o‐R3Si)PhPPV], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(m‐R3Si)PhPPV], and poly[2‐(4‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(p‐R3Si)PhPPV]—were synthesized according to the Gilch polymerization method. The band gap and spectroscopic data were tuned by the dimethyldodecylsilyl substituent being changed from the ortho position to the para position in the phenyl side group along the polymer backbone. The weight‐average molecular weights and polydispersities were 8.0–96 × 104 and 3.0–3.4, respectively. The maximum photoluminescence wavelengths for (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV appeared around 500–530 nm in the green emission region. Double‐layer light‐emitting diodes with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Al configuration were fabricated with these polymers. The turn‐on voltages and the maximum brightness of (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV were 6.5–8.7 V and 1986–5895 cd/m2, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2347–2355, 2004  相似文献   

3.
Two novel organic–inorganic hybrid polyfluorene derivatives, poly{(9,9′‐dioctyl‐2,7‐fluorene)‐co‐(9,9′‐di‐POSS‐2,7‐fluorene)‐co‐[2,5‐bis(octyloxy)‐1,4‐phenylene]} (PFDOPPOSS) and poly{(9,9′‐dioctyl‐2,7‐fluorene)‐co‐(9,9′‐di‐POSS‐2,7‐fluorene)‐co‐bithiophene} (PFT2POSS), were synthesized by the Pd‐catalyzed Suzuki reaction of polyhedral oligomeric silsesquioxane (POSS) appended fluorene, dioctyl phenylene, and bithiophene moieties. The synthesized polymers were characterized with 1H NMR spectroscopy and elemental analysis. Photoluminescence (PL) studies showed that the incorporation of the POSS pendant into the polyfluorene derivatives significantly enhanced the fluorescence quantum yields of the polymer films, likely via a reduction in the degree of interchain interaction as well as keto formation. Additionally, the blue‐light‐emitting polyfluorene derivative PFDOPPOSS showed high thermal color stability in PL. Moreover, single‐layer light‐emitting diode devices of an indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/polymer/Ca/Al configuration fabricated with PFDOPPOSS and PFT2POSS showed much improved brightness, maximum luminescence intensity, and quantum efficiency in comparison with devices fabricated with the corresponding pristine polymers PFDOP and PFT2. In particular, the maximum external quantum efficiency of PFT2POSS was 0.13%, which was twice that of PFT2 (0.06%), and the maximum current efficiency of PFT2POSS was 0.38 cd/A, which again was twice that of PFT2 (0.19 cd/A). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2943–2954, 2006  相似文献   

4.
Novel conjugated polyfluorene copolymers, poly[9,9‐dihexylfluorene‐2,7‐diyl‐co‐(2,5‐bis(4′‐diphenylaminostyryl)‐phenylene‐1,4‐diyl)]s (PGs), have been synthesized by nickel(0)‐mediated polymerization from 2,7‐dibromo‐9,9‐dihexylfluorene and 1,4′‐dibromo‐2,5‐bis(4‐diphenylaminostyryl)benzene with various molar ratios of the monomers. Because of the incorporation of triphenylamine (TPA) moieties, PGs exhibit much higher HOMO levels than the corresponding polyfluorene homopolymers and are able to facilitate hole injection into the polymer layer from the anode electrode in light‐emitting diodes. Conventional polymeric light‐emitting devices with the configuration ITO/PEDOT:PSS/polymer/Ca/Al have been fabricated. A light‐emitting device produced with one of the PG copolymers (PG10) as the emitting layer exhibited a voltage‐independent and stable bluish‐green emission with color coordinates of (0.22, 0.42) at 5 V. The maximum brightness and current efficiency of the PG10 device were 3370 cd/m2 (at 9.6 V) and 0.6 cd/A, respectively. To realize a white polymeric light‐emitting diode, PG10 as the host material was blended with 1.0 wt % of a red‐light‐emitting polymer, poly[9,9‐dioctylfluorene‐2,7‐diyl‐alt‐2,5‐bis(2‐thienyl‐2‐cyanovinyl)‐1‐(2′‐ethylhexyloxy)‐4‐methoxybenzene‐5′,5′‐diyl] (PFR4‐S), and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV). The device based on PG10:PFR4‐S showed an almost perfect pure white electroluminescence emission, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.36) at 8 V; for the PG10:MEH‐PPV device, the CIE coordinates at this voltage were (0.30, 0.40) with a maximum brightness of 1930 cd/m2. Moreover, the white‐light emission from the PG10:PFR4‐S device was stable even at different driving voltages and had CIE coordinates of (0.34, 0.36) at 6 V and (0.31, 0.35) at 10 V. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1199–1209, 2007  相似文献   

5.
Fabrication of polymer light‐emitting diodes based on emission from the phosphorescent molecule fac‐tris(2‐phenylpyridine) iridium doped into a poly(N‐vinyl carbazole) host are reported. For single‐layered devices with magnesium‐silver cathodes, the luminance efficiency at 20 mA/cm2 was measured as 8.7 cd/A. This efficiency could be increased by over a factor of two by incorporation of evaporated small‐molecule layers into the device structure. Significant increases in device efficiency were also obtained without these evaporated layers by modification of the electrodes. Incorporation of 3,4‐poly(ethylene dioxythiophene):poly(styrene sulfonate) at the anode improved the device efficiency but had little impact on drive voltage. Insertion of lithium fluoride at the cathode resulted in no improvement in performance for magnesium‐silver and aluminum cathodes, but a significant improvement was realized in efficiency and drive voltage for calcium‐aluminum cathodes. Excellent device performance was observed for all three cathode metals used in conjunction with cesium fluoride. Through optimization of the electrodes and emitter‐layer thickness, devices exhibiting efficiencies as high as 37.3 cd/A are realized. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2715–2725, 2003  相似文献   

6.
We report on photocrosslinkable hole‐transport polymers and their use as photodefinable hole‐transport layers in organic light‐emitting diodes. The polymers were obtained by copolymerization of bis(diarylamino)biphenyl‐based acrylate monomers with cinnamate‐functionalized acrylate moieties. Polymers with a range of redox potentials were obtained by varying the substitution patterns of the bis(diarylamino)biphenyl units. The 2 + 2 cycloaddition of the cinnamate moieties following UV irradiation renders the material insoluble. This allows for patterning of the polymer and simultaneously enables the fabrication of multilayer structures from solution. Hole mobilities were measured in these copolymers with the time‐of‐flight technique. Their performance as hole‐transport layers in light‐emitting diodes, with tris(8‐hydroxyquinolinato)aluminum as the emitter and electron‐transport layer, is evaluated. Electroluminescent devices with multiple hole‐transport layers having different ionization potentials were fabricated from solution, and the quantum efficiency of these devices was greater than that for devices based on a single hole‐transport layer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2726–2732, 2003  相似文献   

7.
We prepared an iridium polymer complex having 2‐phenylpyridine as a η2‐cyclometallated ligand, a new OLED containing a solution‐processible iridium polymer as a host, and a phosphorescent iridium complex, [Ir(piq‐tBu)3] as a guest. This is the first example to apply a phosphorescent iridium complex polymer to a host material in a phosphorescent OLED. A phosphine copolymer ligand made from methyl methacrylate (MMA) and 4‐styryldiphenylphosphine can be used as an anchor polymer, which coordinates to luminescent iridium units to form a host metallopolymer easily. The OLED containing the host iridium‐complex polymer film, in which the guest, 2 wt % Ir(piq‐tBu)3, was doped, showed red electroluminescence as a result of efficient energy transfer from the iridium polymer host to the iridium guest. The maximum current efficiency of the device was 1.00, suggesting that a soluble iridium complex polymer can be used as a solution‐processible polymer host in EL devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4358–4365, 2009  相似文献   

8.
We report novel host polymers for a high‐efficiency polymer‐based solution‐processed phosphorescent organic light‐emitting diode with typical blue‐emitting dopant bis(4,6‐difluorophenylpyridinato‐N,C2)iridium(III) picolinate (FIrpic). The host polymers, soluble polynorbornenes with pendant carbazole derivatives, N‐phenyl‐9H‐carbazole ( P1 ), N‐biphenyl‐9H‐carbazole ( P2 ), and 9,9′‐(1,3‐phenylene)bis‐9H‐carbazole (mCP) ( P3 ) are efficiently synthesized by vinyl addition polymerization of norbornene monomers using Pd(II) catalyst in combination with 1‐octene chain transfer agent. The polymers exhibit high thermal stability with high decomposition (Td5 > 410 °C) and glass transition temperatures (Tg ≈ 268 °C). The HOMO (ca. ?5.5 to ?5.7 eV) and LUMO (ca. ?2.0 to ?2.1 eV) levels with the high triplet energy of about 2.7–3.0 eV suggest that the polymers are suitable for a host material for blue emitters. Among the solution‐processed devices that were fabricated based on the emissive layers containing the P1 ? P3 host doped with various concentrations of FIrpic (7–13 wt %), the best device with P3 host exhibits power efficiency of 3.0 lm W?1 and external quantum efficiency of 4.0% at a luminance of 1000 cd m?2 that is outstanding among the polymeric rivals. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
A new series of fluorene‐based polyquinoxalines with an ether linkage in the main chain were prepared by the polycondensation reaction between a tetraketone monomer and 3,3′,4,4′‐tetraaminodiphenyl ether. The polycondensation was usually carried out in m‐cresol. The resulting polymers ( P1 – P3 ) [ P1 = poly(quinoxaline‐co‐9,9‐dihexyl‐2,7‐dimethyl‐9H‐fluorene) P2 = poly(quioxaline‐co‐9,9‐dihexyl‐9‐pentyl‐2,7‐di‐p‐tolyl‐9H‐fluorene) P3 = poly(quioxaline‐co‐9,9‐bis‐(4‐methoxy‐phenyl)‐2,7‐dimethyl‐9H‐fluorene)] showed good solubility in common organic solvents and high thermal stability with only a 5% weight loss up to 440 °C. P1 and P2 had very high glass‐transition temperatures of 212 and 223 °C, respectively, whereas P3 did not show any phase‐transition temperature in repeated scans up to 300 °C. All the polymers in photoluminescence showed blue emissions in the range of 432–465 nm, both in chloroform solutions and in thin films. Light‐emitting diode devices of the configuration indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer:poly(N‐vinylcarbazole) blend (2:8)/LiF/Al were fabricated with P1 or P2 and emitted blue light with electroluminescence peak wavelengths of 434 and 448 nm, respectively. The maximum brightness and the external quantum efficiency of P1 were 0.56 μW/cm2 at 29 V and 0.056%, whereas P2 showed 0.50 μW/cm2 at 34 V and a relatively low value of 0.015%, respectively. Cyclic voltammetry studies revealed that these polymers possessed low‐lying ionization potential energy levels ranging from ?5.49 to ?5.86 eV and low‐lying electron affinity energy levels ranging from ?2.65 to ?2.88 eV. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1189–1198, 2006  相似文献   

10.
A series of light‐emitting hyperbranched poly(arylene ethynylene)s (HB‐PAEs) were prepared by the Sonogashira coupling from bisethynyl of carbazole, fluorene, or dialkoxybenzenes (A2 type) and tris(4‐iodophenyl)amine (B3 type). For comparison, two linear polymers (L‐PAEs) of the HB analogs were also synthesized. The polymers were characterized by Fourier transform infrared, NMR, and GPC. The HB polymers showed excellent solubility in chloroform, THF, and chlorobenzene when compared with their linear analogs. The number‐average molecular weight (Mn) of the polymers determined from GPC was found to be in the range of 18,600–34,200. The polymers were thermally stable up to 298–330 °C with only 5% weight loss. The absorption maxima of the polymers were between 354 and 411 nm with optical band gap in the range of 2.5–2.9 eV. The HB polymers were found to be highly fluorescent with photoluminescence quantum yields around 33–42%. The highest occupied molecular orbital energy levels of the polymers calculated from onset oxidation potentials were found to be in the range from ?5.83 to ?6.20 eV. Electroluminescence (EL) properties of three HB‐PAEs and one L‐PAE were investigated with device configuration ITO/PEDOT:PSS/Polymer/LiF/Al. The EL maxima of HB‐PAEs were found to be in the range of 507–558 nm with turn‐on voltages around 7.5–10 V and maximum brightness values of 316–490 cd/m2. At the same time, linear analog of one HB‐PAE was found to show a maximum brightness of 300 cd/m2 at a turn‐on voltage of 8.2 V. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
12.
Polyfluorene homopolymer ( P1 ) and its carbazole derivatives ( P2 – P4 ) have been prepared with good yield by Suzuki coupling polymerization. P2 is an alternating copolymer based on fluorene and carbazole; P3 is a hyperbranched polymer with carbazole derivative as the core and polyfluorene as the long arms; P4 is a hyperbranched polymer with carbazole derivative as the core and the alternating fluorene and carbazole as the long arms. These polymers show highly thermal stability, and their structures and physical properties are studied using gel permeation chromatography, 1H NMR, 13C NMR, elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, UV–vis absorption, photoluminescence, and cyclic voltammetry (CV). The influence of the incorporation of carbazole and the hyperbranched structures on the thermal, electrochemical, and electroluminescent properties has been investigated. Both carbazole addition and the hyperbranched structure increase the thermal and photoluminescent stability. The CV shows an increase of the HOMO energy levels for the derivatives, compared with polyfluorene homopolymer ( P1 ). The EL devices fabricated by these polymers exhibit pure blue‐light‐emitting with negligible low‐energy emission bands, indicating that the hyperbranched structure has a strong effect on the PLED characteristics. The results imply that incorporating carbazole into polyfluorene to form a hyperbranched structure is an efficient way to obtain highly stable blue‐light‐emitting conjugated polymers, and it is possible to adjust the property of light‐emitting polymers by the amount of carbazole derivative incorporated into the polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 790–802, 2008  相似文献   

13.
Four copolyfluorenes chemically doped with 0.1 and 1 mol % 3,7‐bis[2‐thiophene‐2‐yl)‐2‐cyanovinyl]phenothiazine ( PFPhT ) or 2,5‐bis[2‐(thiophene‐2‐yl)‐2‐cyanovinyl]thiophene chromophores ( PFThT ) were synthesized using the Suzuki coupling reaction and applied in white‐light‐emitting devices. They were characterized by GPC, elemental analysis, DSC, TGA, optical spectra, and cyclic voltammetry. They exhibited good thermal stability (Td > 420 °C) and moderate glass transition temperatures (>95 °C). The PhT‐Br and ThT‐Br showed PL peaks at 586 and 522 nm (with a shoulder at 550 nm). In film state, PL spectra of the copolymers comprised emissions from the fluorene segments and the chromophores due to incomplete energy transfer. Both monomers exhibited low LUMO levels around ?3.50 to ?3.59 eV, whereas the PhT‐Br owned the higher HOMO level (?5.16 eV) due to its electron‐donating phenothiazine core. Light‐emitting diodes with a structure of ITO/PEDOT:PSS/copolymer/Ca(50 nm)/Al(100 nm) showed broad emission depending on the chromophore contents. The maximum brightness and maximum current efficiency of PFPhT2 ( PFThT1 ) device were 8690 cd/m2 and 1.43 cd/A (7060 cd/m2 and 0.98 cd/A), respectively. White‐light emission was realized by further blending PFPhT2 with poly(9,9‐dihexylfluorene) (w/w = 10/1), with the maximum brightness and maximum current efficiency being 10,600 cd/m2 and 1.85 cd/A. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 833–844, 2009  相似文献   

14.
We describe a facile fabrication of white light‐emitting cadmium sulfide (CdS)‐poly(HEA‐co‐NVK) nanocomposites [2‐hydroxyethyl acrylate (HEA) and N‐vinylcarbazole (NVK)] via plasma‐ignited frontal polymerization (PIFP), a novel and rapid reaction mode of converting monomers into polymers in minutes. Frontal polymerization was initiated by igniting the upper side of the reactant with plasma. Once initiated, no additional energy was required for the polymerization to occur. The chemical functional groups of the as‐prepared nanocomposites were thoroughly investigated using Fourier transform infrared spectra. The dependence of the front velocity and front temperature on the initiator concentration and weight ratios of HEA/NVK was also investigated in detail. Perhaps more interestingly, the white light‐emitting materials synthesized by ingeniously incorporating the compensating colors of yellow emitting from 3‐(trimethoxysilyl)‐1‐propanethiol‐capped CdS nanocrystals and blue emitting from carbazole‐containing polymer were conveniently applied onto a commercial UV light‐emitting diode (LED) to generate white LEDs. The subtle change in the weight ratios of CdS/NVK can significantly impact the color hue. The white light becomes gradually colder with the increase of NVK, but becomes gradually warmer with the increase concentration of CdS nanocrystals. In a broad perspective, these white light‐emitting materials designed by PIFP approach will open a new pathway to develop “QD‐polymer nanocomposite down‐conversion LED” in a fast and efficient way. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Rigid polymer backbones have often been considered to be detrimental to the packing of mesogenic pendants, and polyacetylenes have generally been regarded as unpromising materials for light‐emitting applications. Our group, however, has succeeded in creating a series of liquid‐crystalline polyacetylenes with rigid backbones and a variety of light‐emitting polyacetylenes with luminescent chromophores. Here we demonstrate that the rigid polyacetylene skeleton can play a constructive role in guiding the alignments of mesogenic pendants and prove that polyacetylenes can be highly emissive with photoluminescence quantum yields of up to 98% and electroluminescence performances comparable or superior to those of the best blue‐light‐emitting polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2607–2629, 2003  相似文献   

16.
New white polymeric light‐emitting diodes from phosphorescent single polymer systems have been developed using a blue‐light‐emitting fluorene monomer copolymerized with a red‐light‐emitting phosphorescent dye, and end‐capped with a green‐light‐emission dye. All of the copolymers have good thermal stability with 5% weight loss temperatures at 380–413 °C and glass transition temperatures at 75–137 °C. We obtained white‐light‐emission devices by adjusting the molar ratio of the comonomers with a structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid)/polyvinylcarbazole (PVK)/emission layer/Ca/Ag. The highest brightness in such a device configuration is 300 cd/m2 at a current density of 2900 A/m2 with high white color quality (Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.34)). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 464–472, 2008  相似文献   

17.
A series of naphthyl‐substituted poly(p‐phenylenevinylene)s (2N‐PPV, 4N‐PPV, and NAP‐PPV) has been synthesized and characterized by Fourier transform IR, 1H NMR, and elemental analysis. The polymers possess excellent solubility, high molecular weights, good thermal stability, and high photoluminescence efficiencies. Thermogravimetric analysis reveals the onset of degradation to be 347, 301, and 306 °C for 2N‐PPV, 4N‐PPV, and NAP‐PPV, respectively. The differential scanning calorimetry investigation gives the respective glass‐transition temperature values of 118, 135, and 141 °C. The UV and photoluminescence spectra measurements reveal that the polymers exhibit similar optical properties, indicating that side‐chain substitution has little effect on the optical properties of this series of polymers. Proton NMR measurement of the signal due to tolane–bisbenzyl defects at around 2.7 ppm indicates that all the polymers have negligible amounts of tolane–bisbenzyl defects along the polymer main chain as a result of the steric bulk imposed by the naphthalene side chain. The highest occupied and lowest unoccupied molecular orbital energy levels of the polymers are investigated through cyclic voltammetry. Polymer light‐emitting diodes utilizing the polymers as the emissive layer with a configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Ba/Al are fabricated and evaluated. The diodes emit blue‐green to yellow‐green light with maximum peaks at 518, 542, and 486 nm for 2N‐PPV, 4N‐PPV, and NAP‐PPV, respectively. The respective turn‐on electric fields of the diodes are 0.84, 0.69, and 0.83 MV/cm and the respective maximum external quantum efficiencies are 0.08, 0.54, and 0.02%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1647–1657, 2004  相似文献   

18.
This article presents the synthesis and electroluminescent (EL) properties of a stable blue‐light‐emitting copolyfluorene ( P1 ) consisting of carbazole, oxadiazole and charge‐trapping anthracene groups by Suzuki coupling reaction. The hole‐transporting carbazole and electron‐transporting oxadiazole improve charges injection and transporting properties, whereas the anthracene is the ultimate emitting chromophore. The thermal, photophysical, electrochemical, and EL properties of P1 were investigated by thermogravimetric analysis, differential scanning calorimeter, optical spectroscopy, cyclic voltammetry, and EL devices fabrication and characterization. P1 demonstrated high‐thermal stability with thermal decomposition and glass tranistion temperatures above 400 and 145°C, respectively. In film state, P1 showed blue emission at 451 nm attributed to anthracene chromophore. Photophysical and electrochemical investigations demonstrate that effective energy transfer from fluorene to anthracene segments and charges trapping on anthracene segments leads to efficient and stable blue emission originating from anthracence. Polymer light‐emitting diodes using P1 as the emitting layer (ITO/PEDOT:PSS/ P1 /Ca/Al) exhibited excellent current efficiency (5.1 cd/A) with the CIE coordinate being (0.16, 0.11). The results indicate that copolyfluorene is a promising candidate for the blue‐emitting layer in the fabrication of efficient PLEDs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
We investigated the lasing properties of optically pumped polymer films. Amplified spontaneous emission (ASE) around 400 nm was observed in polymer films of polystyrene (PS) and poly(N‐vinylcarbazole) (PVK) doped up to 20% with the hole‐transporting organic molecule N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine (TPD). Thus, TPD‐based films are candidates for blue‐emitting organic diode lasers. Films containing several semiconducting organic molecules and polymers and rare‐earth complexes were also investigated. Energy transfer was observed in PVK films doped with various europium and samarium complexes. PS films containing the electron‐transporting organic molecule 2‐(4‐biphenylyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole and small amounts of TPD also showed energy transfer to the europium complexes, but not to the samarium ones. None of these films demonstrated ASE; therefore, they are not appropriate for lasing purposes. However, because rare‐earth ions have very sharp emission spectra, these materials are candidates for very monochromatic light‐emitting diodes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2706–2714, 2003  相似文献   

20.
A series of new low band gap π‐conjugated polymers containing N‐alkyldithieno[3,2‐b:2′,3′‐d]pyrrole, benzo[c][1,2,5]thiadiazole, and alkylthiophenes are reported. The polymerization condition was standardized and the use of CuO to obtain high‐molecular‐weight polymer was also realized. The molecular weight of the polymers was found to be in the range of 45,000–53,000. All the polymers were found to be soluble in most of the common organic solvents, such as chloroform, dichloromethane, THF, and chlorobenzene with excellent film forming properties. The λmax of the polymers was found to be in the range of 687–663 nm with band gap in the range of 1.35–1.43 eV. The oxidation potential of the polymers from cyclic voltammetry was determined to be 0.5–0.75 V. The HOMO levels of the above synthesized polymers were found to be between 5.24 and 5.54 eV. All the polymers exhibited a PL emission in between 755 and 773 nm. The polymers were found to be thermally stable above 277 °C with only a 5% weight loss. From the thermal stability values, it is expected that the current set of polymers are stable enough for the application in electronic devices. To realize the potential use of the polymers, EL devices were fabricated and found to show red emission with comparatively low threshold voltage. A brightness of 54 cd m−2 for the device with polymer PC could be reached. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6514–6525, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号