首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogels have been widely used in microelectromechanical systems (MEMS) and Bio‐MEMS devices. In this article, the equilibrium swelling/deswelling of the pH‐stimulus cylindrical hydrogel in the microchannel is studied and simulated by the meshless method. The multi‐field coupling model, called multi‐effect‐coupling pH‐stimulus (MECpH) model, is presented and used to describe the chemical field, electric field, and the mechanical field involved in the problem. The partial differential equations (PDEs) describing these three fields are either nonlinear or coupled together. This multi‐field coupling and high nonlinear characteristics produce difficulties for the conventional numerical methods (e.g., the finite element method or the finite difference method), so an alternative—meshless method is developed to discretize the PDEs, and the efficient iteration technique is adopted to solve the nonlinear problem. The computational results for the swelling/deswelling diameter of the hydrogel under the different pH values are firstly compared with experimental results, and they have a good agreement. The influences of other parameters on the mechanical properties of the hydrogel are also investigated in detail. It is shown that the multi‐field coupling model and the developed meshless method are efficient, stable, and accurate for simulation of the properties of the stimuli‐sensitive hydrogel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 326–337, 2006  相似文献   

2.
Stimuli‐responsive hydrogels are continuing to increase in demand in biomedical applications. Occluding a blood vessel is one possible application which is ideal for a hydrogel because of their ability to expand in a fluid environment. However, typically stimuli‐responsive hydrogels focus on bending instead of radial uniform expansion, which is required for an occlusion application. This article focuses on using an interdigitated electrode device to stimulate an electro‐responsive hydrogel in order to demonstrate a uniform swelling/deswelling of the hydrogel. A Pluronic‐bismethacrylate (PF127‐BMA) hydrogel modified with hydrolyzed methacrylic acid, in order to make it electrically responsive, is used in this article. An interdigitated electrode device was manufactured containing Platinum electrodes. The results in this paper show that the electrically biased hydrogels deswelled 230% more than the non‐biased samples on average. The hydrogels deswelled uniformly and showed no visual deformations due to the electrical bias. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1523–1528  相似文献   

3.
The aim of this work was the development of a versatile route for the preparation of temperature‐ and pH‐responsive hydrogels with small dimensions. The copolymerization of N,N‐dimethylaminoethyl methacrylate with various amounts (5 and 10 mol %) of dimethylmaleimidoethyl methacrylate in solution with 2,2′‐azobisisobutyronitrile as an initiator is described. The structural and molecular characterization of the copolymers was performed with proton nuclear magnetic resonance, Fourier transform infrared, and ultraviolet spectroscopy, as well as size exclusion chromatography. Differential scanning calorimetry and thermogravimetry were used for the thermal characterization of the copolymers. Micro‐ and nanohydrogels of the copolymers were prepared by photocrosslinking. The gels obtained by photocrosslinking were characterized with a combination of surface plasmon resonance and optical waveguide spectroscopy, dynamic light scattering, and scanning electron microscopy. The hydrogels showed temperature‐ and pH‐responsive behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 669–679, 2007  相似文献   

4.
Stimuli responsive hydrogels (PNIPAAm‐MSp) with a thermoresponsive backbone and photochromic pendant groups were synthesized via free radical polymerization using N‐isopropylacrylamide, modified spironaphthoxazines with a polymerizable double bond (MSp) as photochromic monomer, the crosslinker N,N′‐methylenebis(acrylamide) and the initiator 2,2′‐azobis(isobutyronitrile) in dimethylsulfoxide. The polymers are dual responsive, in that poly(N‐isopropylacrylamide) (PNIPAAm) responds to temperature changes whereas the pendant spironaphthoxazines respond to light. Irradiation enhanced the water absorption of the polymers while increases in temperature decreased it. The irradiated PNIPAAm‐MSp showed best water absorption at 0 °C (Q = 3.25) while water desorbed at higher temperatures (35 °C; Q = 0.30); where Q is the amount of water absorbed by a gram of dry polymer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3318–3325, 2009  相似文献   

5.
In this work, a series of biodegradable and pH‐responsive hydrogels based on polyphosphoester and poly(acrylic acid) are presented. A novel biodegradable macrocrosslinker α‐methacryloyloxyethyl ω‐acryloyl poly(ethyl ethylene phosphate) (HEMA‐PEOP‐Ac) was synthesized by first ring‐opening polymerization of the cyclic monomer 2‐ethoxy‐2‐oxo‐1,3,2‐dioxaphospholane using HEMA as the initiator and Sn(Oct)2 as catalyst, and subsequent conversion of hydroxyl into vinyl group. The hydrogels were then fabricated by the copolymerization of the macromonomer with acrylic acid, and their swelling/deswelling and degradation behaviors were investigated. The results demonstrated that the crosslinking density and pH values of media strongly influenced both the swelling ratio and the degradation rate of the hydrogels. The rheological properties of these hydrogels were also studied from which the storage modulus (G′) showed clear dependence on the crosslinking density. MTT and “live/dead” assay showed that these hydrogels were compatible to fibroblast cells, not exhibiting apparent cytotoxicity even at high concentrations. Moreover, in vitro bovine serum albumin release from these hydrogels was also investigated, and it could be found that the release profiles showed a burst effect followed by a continuous release phase, and the release rate was inversely proportional to the crosslinking density of hydrogels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1919–1930, 2010  相似文献   

6.
In this work, we report on the synthesis and characterization of homopolymers and copolymers of acrylic acid and 2‐hydroxyethyl acrylate prepared by the use of the frontal polymerization (FP) technique. Tetraethyleneglycoldiacrylate was used as a crosslinker and benzoyl peroxide as an initiator. The maximum temperatures reached by the front were in the range between 214 °C and 296 °C. Besides, front velocities ranged between 3.9 and 10.8 cm/min, the latter being one of the highest values reported so far in the FP literature. Differential scanning calorimetry was used to estimate the conversion degree, which was always comprised between 90% and 96%, and to determine the glass transition temperatures, which were found to be dependent on the composition, with values ranging from 13 °C to 168 °C. Moreover, the obtained materials were allowed to swell in aqueous solutions at various pH. The samples exhibit a moderate increase of the swelling ratio percentage (SR%) at pH ≈ 5–6, and a sudden and larger SR% increase at pH ≈ 12–13 depending on the composition, thus indicating the obtainment of pH‐responsive polymer hydrogels. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
8.
Thermoresponsive poly(N‐vinylcaprolactam) nanocomposite hydrogels containing graphene were successfully prepared by frontal polymerization. High concentration of graphene (5.0 mg/mL) was obtained by direct graphite sonication in the self‐same liquid monomer, thus avoiding any chemical manipulation and obtaining “real” graphene as nanofiller instead of one of its more or less oxidized derivative, which is what generally reported in published reports. Furthermore, the corresponding nanocomposites were obtained without using any solvent to be eventually removed. The materials were fully characterized by RAMAN, SEM, and TEM, and their swelling behavior and rheological properties were investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
10.
In this work, we report a series of poly(itaconic acid‐co‐acrylic acid‐co‐acrylamide) (poly(IA‐co‐AAc‐co‐AAm)) hydrogels via frontal polymerization (FP). FP starts on the top of the reaction mixture with aid of heating provided from soldering iron gun. Once polymerization initiated, no further energy is required to complete the process. The influences of IA/AAc weight ratios on frontal velocities, temperatures, and conversions on the reaction time are thoroughly investigated and discussed where the amount of AAm monomer remains constant. Fourier transform‐infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), dynamic mechanical analysis, and the swelling measurement are applied to characterize the as‐synthesized poly(IA‐co‐AAc‐co‐AAm) hydrogels. Interestingly, the swelling ratios of the hydrogels are changed with different IA/AAc contents, and the maximum swelling ratios are ~4439% in water. SEM images describe highly porous morphologies and explain good swelling capabilities. Moreover, the poly(IA‐co‐AAc‐co‐AAm) hydrogels exhibit superior pH‐responsive ability. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2214–2221  相似文献   

11.
pH‐sensitive nanoclay composite hydrogels based on N‐isopropylacrylamide (NIPA) were synthesized by copolymerization with cationic and anionic comonomers. Laponite nanoclay particles served as multifunctional crosslinkers, producing hydrogels with exceptionally high mechanical strengths, as measured by elongation at break. Cationic copolymer gels based on NIPA and dimethylaminoethylmethacrylate were prepared by aqueous free radical polymerization, adopting a procedure reported by Haraguchi (Adv Mater 2002, 14, 1120–1124). Without modification, this technique failed to produce anionic copolymer gels of NIPA and methacrylic acid (MAA), due to flocculation of clay particles. Three methods were conceived to incorporate acidic MAA into nanoclay hydrogels. First, NIPA was copolymerized with sodium methacrylate under dilute conditions, producing hydrogels with good pH‐sensitivity but weak mechanical characteristics. Second, NIPA was copolymerized with methyl methacrylate, which was then hydrolyzed to generate acid sidegroups, yielding hydrogels that were much stronger but less pH sensitive. Third, NIPA was copolymerized with MAA following modification of the nanoclay surface with pyrophosphate ions. The resulting hydrogels exhibited both strong pH‐sensitivities at 37 °C and excellent tensile properties. Optical transparency changed during polymerization, depending on hydrophobicity of the components. This work increases the diversity and functionality of nanoclay hydrogels, which display certain mechanical advantages over conventionally crosslinked hydrogels. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6630–6640, 2008  相似文献   

12.
Macroporous temperature‐sensitive poly(N‐isopropylacrylamide) (PNIPA) hydrogels were prepared by a novel phase‐separation technique to improve the response properties. In comparison with a conventional PNIPA hydrogel prepared in water, these macroporous hydrogels, prepared by polymerization in aqueous sucrose solutions, have higher swelling ratios at temperatures below the lower critical solution temperature and exhibit much faster response rates to temperature changes.

Scanning electron microscopy image of the surface of a PNIPA hydrogel, prepared in 1.50 M aqueous sucrose solution.  相似文献   


13.
In this work, a new stimuli‐responsive composite polymer hydrogel containing partially exfoliated graphite was prepared by frontal polymerization. The materials obtained were characterized by differential scanning calorimetry, RAMAN, scan electron microscopy, transmission electron microscopy, atomic force microscopy, and in terms of swelling behavior. It was found that the maximum temperature reached by the polymerization front and the lower critical solution temperature are affected by the graphite content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
15.
Thermosensitive Poly(N‐isopropylacrylamide) (PNIPA) hydrogels were synthesized by a free radical solution polymerization in three different ways. Normal hydrogels were prepared at room temperature and normal cryogels were prepared at subzero temperature. A cation surfactant dodecyl dimethyl benzyl ammonium bromide (DDBAB) was used during preparation of novel cryogels in freezing state. The response rates of normal hydrogels were very slow, whereas the rates of both normal and novel cryogels were very fast because of the macroporous structure of the cryogels. Mixed solvents which were composed of pure water and 1,4‐dioxane at various concentrations were used instead of pure water during the polymerization. The effects of the mixed solvent on morphology, swelling ratio, and deswelling/reswelling kinetics of the three kinds of hydrogels were investigated. For normal hydrogels and normal cryogels, there was no remarkable difference no matter the mixed solvent or pure water was used. However, the properties of the resulted novel cryogels were much different with the concentration of dioxane. Finally, the resulted hydrogels were used for concentrating emulsified paraffin. The different separation performance was attributed to the different structure of gel matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6594–6603, 2008  相似文献   

16.
Temperature‐responsive hydrogels are one of the most widely studied types of stimuli‐responsive hydrogel systems. Their ability to transition between their swollen and collapsed states makes them attractive for controlled drug delivery, microfluidic devices, and biosensor applications. Recent work has shown that poly(ethylene glycol) (PEG) methacrylate polymers are temperature‐responsive and exhibit a wide range of lower critical solution temperatures based on the length of ethylene glycol units in the macromer chain. The addition of iron oxide nanoparticles into the hydrogel matrix can provide the ability to remotely heat the gels upon exposure to an alternating magnetic field (AMF). In this work, diethylene glycol (n = 2) methyl ether methacrylate and PEG (n = 4.5) methyl ether methacrylate copolymers were polymerized into hydrogels with 5 mol % PEG 600 (n = 13.6) dimethacrylate as the crosslinker along with 5 wt % iron oxide nanoparticles. Volumetric swelling studies were completed from 22 to 80 °C and confirmed the temperature‐responsive nature of the hydrogel systems. The ability of the gels to collapse in response to rapid temperature changes when exposed to an AMF was demonstrated showing their potential use in biomedical applications such as controlled drug delivery and hyperthermia therapy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3229–3235, 2010  相似文献   

17.
Stimuli‐responsive bioconjugated hydrogels that can respond to a target antigen (antigen‐responsive hydrogels) were prepared by introducing antigen‐antibody bindings as reversible crosslinks into the gel networks. The preparation conditions of the antigen‐responsive hydrogels and the mechanism of the antigen‐responsive behavior were investigated, focusing on bioconjugated hydrogel structures. This article also focuses on the effect of semi‐interpenetrating polymer network (semi‐IPN) structures on the antigen‐responsive swelling/shrinking behavior of bioconjugated hydrogels with antigen‐antibody bindings. The preparation conditions and the network structures of the bioconjugated hydrogels are discussed in relation to designing antigen‐responsive hydrogels. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2144–2157, 2009  相似文献   

18.
Surface wrinkles are interesting since they form spontaneously into well‐defined patterns. The mechanism of formation is well‐studied and is associated with the development of a critical compressive stress that induces the elastic instability. In this work, we demonstrate surface wrinkles that dynamically change in response to a stimulus can improve interfacial adhesion with a hydrogel surface through the dynamic evolution of the wrinkle morphology. We observe that this control is related to the local pinning of the crack separation pathway facilitated by the surface wrinkles during debonding, which is dependent on the contact time with the hydrogel. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

19.
Interactive materials being responsive to a biocompatible stimulus represent a promising approach for future therapeutic applications. In this study, we present a novel biohybrid material synthesized from biocompatible components being stimulus‐responsive to the pharmaceutically approved small‐molecule novobiocin. The hydrogel design is based on the gyrase B (GyrB) protein, which is covalently grafted to multi‐arm polyethylene glycol (PEG) using a Michael‐type addition reaction. Upon addition of the GyrB‐dimerizing substance coumermycin, stable hydrogels form which can be dissolved in a dose‐adjustable manner by the antibiotic novobiocin. The switchable properties of this PEG‐based hydrogel are favorable for future applications in tissue engineering and as externally controlled drug depot.  相似文献   

20.
A novel semi‐interpenetrating polymer network based on alginate and poly(N‐isopropylacrylamide) (PNiPAAm) has been synthesized that shows response to temperature and magnetic fields. Highly homogeneous porous hydrogels are obtained by copolymerizing N‐isopropylacrylamide and bis‐acrylamide in the presence of an aqueous alginate solution. The synthesis of magnetic iron oxides by in‐situ oxidation of iron cations coordinated to the alginate network results in a hydrogel with an enhanced deswelling rate with respect to pure PNiPAAm.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号