首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanocomposites based on a thermoplastic polyimide, poly{1,3-bis(3′,4-dicarboxyphenoxy)benzene[4,4′-bis(4″-N-phenoxy)diphenyl sulfone]imide}, and synthetic magnesium silicate nanoparticles with montmorillonite structure were prepared from melts. Efficient modification of the surface of the initial nanoparticles with (aminoethylaminomethyl)phenethyltrimethoxysilane was performed.  相似文献   

2.
Specific features of preparing composites of an alicyclic polyimide with various forms of montmorillonite were studied. The kinetic parameters of the polyimide formation under the conditions of the onestep polycondensation in the presence of the modified mineral were determined, and some physicomechanical and thermal properties of the films were examined.  相似文献   

3.
Russian Journal of Applied Chemistry - A series of fibrous composites, carbon- and glass-reinforced plastics based on heat-resistant polyimide binders, were prepared. The viscoelastic and strength...  相似文献   

4.
Two heat-resistant thermosetting polymers ( IX and X ) have been developed based on a new cyclotriphosphazene containing tetrakisamine. These polymers were synthesized by the reaction of tetrakisamine ( IV ) with maleic anhydride followed by in situ cyclodehydration and polymerization of the maleimides ( VII and VIII ) at 235–240°C for 1.5 h and 290°C for 0.5 h. The thermogravimetric analyses (TGA) of the developed cyclotriphosphazene containing cyclomatrix polymers showed their thermal stability up to 350°C and char yield of 71% in nitrogen at 800°C and 65% in air at 700°C. The monomer, 2,2,4,4-tetrakis(4′-aminophenoxy) -6,6-diphenylcyclotriphosphazene ( IV ), useful for producing a variety of heat- and fire-resistant polymers, has been synthesized in good yield. Its syntheses involve Friedel-Crafts reaction of hexachlorocyclotriphosphazene ( I ) with benzene followed by the reaction of 2,2,4,4-tetrachloro-6,6-diphenylcyclotriphosphazene ( II ) with potassium 4-nitrophenoxide. The reduction of the obtained 2,2,4,4-tetrakis(4′-nitrophenoxy)-6,6-diphenylcyclotriphosphazene ( III ) with molecular hydrogen in presence of PtO2 gave the tetrakisamine ( IV ). The structure of the synthesized monomer and intermediates were characterized by FT-IR, 1H-NMR, 31P-NMR, mass spectroscopy, differential scanning calorimetry (DSC), and elemental analysis. These resins are potential candidates for the development of heat- and fire-resistant composites, laminates, and adhesives, useful for space, aerospace, and electronic application. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
ZnS nanoparticles were prepared and deposited on montmorillonite (MMT) in the presence of cetyltrimethylammonium (CTA). UV spectrometry and transmission electron microscopy (TEM) proved the formation of nanoparticles with diameters ranging from 3 nm to 5 nm. Selected-area electron diffraction (SAED) patterns revealed the presence of romboedric ZnS. The band gap energy of nanosize ZnS was estimated at 3.89 ± 0.03 eV. Photoluminescence spectra exhibited a strong emission band between 300 nm and 600 nm explained by the vacant ZnS nanostructure. The prepared ZnS-montmorillonite nanocomposite (ZnS-MMT) was used for the photocatalytic reduction of CO(2) providing a considerably high efficiency that exceeded 5-6-fold the results of commercial TiO(2) Degussa P25. The main reaction products were hydrogen and methane. Methanol and carbon oxide were also observed in about 7-fold lower amounts. The stability of ZnS against oxidation was confirmed by the determination of sulphate using capillary isotachophoresis.  相似文献   

6.
Journal of Thermal Analysis and Calorimetry - Applying foamed warm-mix asphalt in pavement has attracted great attention, but its effects on asphalt mastic are not clear. This research investigated...  相似文献   

7.
A monolayer of gamma-Fe(2)O(3) nanoparticles embedded in a polyimide (PI) matrix was fabricated by oxidizing an Fe metal film between two PI precursor layers. There was a critical Fe thickness ( approximately 7 nm) above which a continuous layer of gamma-Fe(2)O(3) film was formed in the PI film. Below the critical Fe thickness, the oxide film broke up into fine particles whose size was approximately 8 nm with narrow size distribution. It was further shown that these nanoparticles could have metallic cores, surrounded by an oxide layer. This method offers a unique way of covering a large surface area with fine magnetic oxide nanoparticles for potential application in high-density data-storage media.  相似文献   

8.
Film-forming polyimide nanocomposites containing 5 to 20 wt % nanoparticles were prepared from ferromagnetic Fe/Fe3O4 nanoparticles and a polyimide derived from 4,4′-bis(4-aminophenoxy)diphenyl sulfone and 1,3-bis(3,4-dicarboxyphenoxy)benzene dianhydride. The mechanical properties and magnetization of the nanocomposite samples were studied in relation to the nanoparticle concentration.  相似文献   

9.
Model gelatin/montmorillonite (Ge/MMt) composites were obtained for a variety of unmodified clay concentrations and in the absence of additives, with the main goal of evaluating the effect of the morphologies developed on the composites thermal stability. Morphologies turned form partially exfoliated to exfoliate/intercalated and eventually agglomerated with increasing clay loading, as was observed by atomic force microscopy. Formulations containing 3–10 mass% montmorillonite resulted in an enhancement of composites thermal stability due to stabilizing interactions between co-components, such as strong hydrogen-type bonds, in agreement with the partially exfoliated/intercalated morphologies. Higher clay concentrations showed lower stabilizing effect in agreement with the agglomerated structures developed and the less effective interactions between co-components.  相似文献   

10.
11.
A photocatalyst that effectively sensitizes the oxidation of 9,10-diphenylanthracene in toluene under irradiation with visible light has been prepared by the treatment of cationic surfactant-modified montmorillonite nanoparticles with a solution of meso-tetrakis(4-sulfonatophenyl)porphyrin. Reaction quantum yields and singlet oxygen generation probability have been determined. The shifts and intensity changes observed for the absorption bands of meso-tetrakis(4-sulfonatophenyl)porphyrin in the catalyst as compared with aqueous solutions are associated with solvation effects. The meso-tetrakis(4-sulfonatophenyl)porphyrin triplet state has been detected using the laser photolysis technique, and the rate constant of its quenching by oxygen on the surface of nanoparticles has been measured.  相似文献   

12.
CdS nanoparticles were precipitated by the reaction of cadmium acetate with sodium sulphide in the presence of cetyltrimethylammonium (CTA) and deposited on montmorillonite (MMT). The resulting CdS-MMT nanocomposite contained 6 wt.% of CdS and 30 wt.% of CTA. Band-gap energy of CdS was estimated at 2.63±0.09 eV using the Tauc plot. The size of CdS nanoparticles was calculated from the band-gap energy at 5 nm and from the micrographs of transmission electron microscopy (TEM) at 5 nm. Selected area electron diffraction (SAED) recognized the cubic structure of CdS (Hawleite). The dynamic light scattering (DLS) method confirmed that CdS nanoparticles were anchored on the surface of MMT particles. CTA was found to be intercalated into MMT and adsorbed on its external surface. CdS-MMT was used for the photoreduction of carbon dioxide dissolved in NaOH solutions. The yields of originating gas products can be arranged in the order: H(2) ? CH(4) > CO. Amounts of these products were 4-8 folds higher then those obtained with TiO(2) Evonic P25. Hydrogen reduced CO(2) to CO and CH(4).  相似文献   

13.
Rheological characteristics of solutions of oligoester urethanes with terminal double bonds in a mixed polar plasticizer were studied. Mathematical models describing the dependence of the solution viscosity and activation energy of the viscous flow on the plasticizer content, and also the dependence of the viscosity on the temperature and concentration were discussed.  相似文献   

14.
In the present study, montmorillonite (MMT) nanoclay and copper oxide (CuO) nanoparticles (NPs) reinforced polyvinylchloride (PVC) based flexible nanocomposite films were prepared via solvent casting technique. Using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA), the structural, morphological and thermal properties of PVC/MMT/CuO nanocomposite films with various loadings of CuO NPs and MMT were investigated. These studies suggested that by the addition of dual nanofillers in the polymer matrix some structural modifications occurred owing to the homogenous dispersion of MMT and CuO NPs within the PVC matrix. The TGA results reveal that the addition of CuO NPs and MMT considerably improved the thermal stability of the nanocomposites. The EMI shielding effectiveness (SE) of nanocomposites was examined in the X-band (8–12 GHz) and Ku-band (12–18 GHz) frequency regions. The EMI SE values were found to be −30 dB (X-band) and −35 dB (Ku-band) for nanocomposites containing 0.3 wt% of CuO NPs and 4.7 wt% of MMT respectively while the shielding was found to be absorption dominant. These results emphasize that PVC/MMT/CuO nanocomposite films can be used as a potential EMI shielding material.  相似文献   

15.
Specific features of modification of an alicyclic polyimide with polyaniline were examined. The thus obtained new polymeric composites exhibit better capability for silver plating.  相似文献   

16.
The structure of film composites based on methyl cellulose and fillers, such as montmorillonite and silver nanoparticles stabilized by poly(vinylpyrrolidone) (Poviargol), is studied by X-ray diffraction. In the composite, montmorillonite nanoparticles exist in the exfoliated state; when the content of the nanoparticles is below 7 wt %, the crystallinity of methyl cellulose increases. Owing to the presence of the filler and structural ordering of the matrix, elastic characteristics improve and the degradation temperature of the composites increases. The X-ray structural data show that the Ag particles in the methyl cellulose-Poviargol composite are 30 nm in size. The introduction of up to 20 wt % Poviargol assists the crystallization of methyl cellulose. The strength and strain characteristics of the film composites based on methyl cellulose and Poviargol make it possible to use these composites in medicine and agriculture.  相似文献   

17.
The physicomechanical properties of foamed polymethacrylimides formed by heat treatment of acrylonitrile-methacrylic acid copolymers were studied in relation to the kind of the foaming agent and to the concentrations of the foaming agent and acrylamide.  相似文献   

18.
The morphology, microhardness, and electrical properties of composites consisting of conductive polypyrrole (PPy) dispersed into a nonconductive polypropylene matrix (PP) as pure component or in form of a sodium montmorillonite/PPy (MMT/PPy) composite have been studied. For comparison, also PP/MMT composites were studied. All types of composites were processed by compression molding or by melt mixing followed by compression molding into plates, which were used for characterization. Scanning electron microscopy and transmission electron microscopy was used to examine the morphology of the prepared materials. The investigation of electrical and dielectric properties was done by dielectric relaxation spectroscopy in a wide frequency range and was related to the composite composition and processing method. The analysis of the conductivity as a function of temperature indicated that the charge transfer mechanism could be described by the variable range hopping model in three dimensions. The microhardness of PP/MMT/PPy composites with different content of MMT or PPy was determined and the creep rate has been estimated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 407–423, 2009  相似文献   

19.
Equilibrium adsorption along with isothermal titration calorimetry (ITC), Fourier transform infrared spectra (FTIR) and scanning electron microscopy (SEM) techniques were employed to investigate the adsorption of Pseudomonas putida on kaolinite and montmorillonite. A higher affinity as well as larger amounts of adsorption of P. putida was found on kaolinite. The majority of sorbed bacterial cells (88.7%) could be released by water from montmorillonite, while only a small proportion (9.3%) of bacteria desorbed from kaolinite surface. More bacterial cells were observed to form aggregates with kaolinite, while fewer cells were within the larger bacteria–montmorillonite particles. The sorption of bacteria on kaolinite was enthalpically more favorable than that on montmorillonite. Based on our findings, it is proposed that the non-electrostatic forces other than electrostatic force play a more important role in bacterial adsorption by kaolinite and montmorillonite. Adsorption of bacteria on clay minerals resulted in obvious shifts of infrared absorption bands of water molecules, showing the importance of hydrogen bonding in bacteria–clay mineral adsorption. The enthalpies of −4.1 ± 2.1 × 10−8 and −2.5 ± 1.4 × 10−8 mJ cell−1 for the adsorption of bacteria on kaolinite and montmorillonite, respectively, at 25 °C and pH 7.0 were firstly reported in this paper. The enthalpy of bacteria–mineral adsorption was higher than that reported previously for bacteria–biomolecule interaction but lower than that of bacterial coaggregation. The bacteria–mineral adsorption enthalpies increased at higher temperature, suggesting that the enthalpy–entropy compensation mechanism could be involved in the adsorption of P. putida on clay minerals. Data obtained in this study would provide valuable information for a better understanding of the mechanisms of mineral–microorganism interactions in soil and associated environments.  相似文献   

20.
To meet the booming demands for lithium-ion battery (LIB), it is practically significant to promote its electrochemical performance and safety. In our work, a novel kind of flexible membrane as separator for LIB is prepared via phase inversion method with soluble polyimide (SPI) containing trifluoromethyl substituent, which is synthesized from 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (6FAPB) and 4,4′-oxydiphthalic anhydride (ODPA). The SPI separator shows 5% weight loss temperature (Td5%) of 535 °C and maintains intrinsic dimension even after heating at 200 °C. The SPI membrane depicts a sponge-like structure with abundant interconnected pores and delivers a dominant porosity (67%). The SPI membrane displays desired electrolyte wettability, validated by contact angle tests (16.2° and 46.8° for SPI membrane and PE separator, respectively) and electrolyte uptake tests (420 and 132% for SPI membrane and PE separator, respectively). The LIB with SPI membrane as separator exhibits nice ionic conductivity (0.92 mS cm?1) than that with PE separator (0.30 mS cm?1), and therefore affords better electrochemical performance, such as cycling stability and rate capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号