首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Let q be a prime power and m a positive integer. A construction method is given to multiply the parametrs of an -circulant BGW(v=1+q+q 2+·+q m , q m , q m q m–1) over the cyclic group C n of order n with (q–1)/n being an even integer, by the parameters of a symmetric BGW(1+q m+1, q m+1, q m+1q m ) with zero diagonal over a cyclic group C vn to generate a symmetric BGW(1+q+·+q 2m+1,q 2m+1,q 2m+1q 2m) with zero diagonal, over the cyclic group C n . Applications include two new infinite classes of strongly regular graphs with parametersSRG(36(1+25+·+252m+1),15(25)2m+1,6(25)2m+1,6(25)2m+1), and SRG(36(1+49+·+492m+1),21(49)2m+1,12(49)2m+1,12(49)2m+1).  相似文献   

2.
We show that the total number of edges ofm faces of an arrangement ofn lines in the plane isO(m 2/3– n 2/3+2 +n) for any>0. The proof takes an algorithmic approach, that is, we describe an algorithm for the calculation of thesem faces and derive the upper bound from the analysis of the algorithm. The algorithm uses randomization and its expected time complexity isO(m 2/3– n 2/3+2 logn+n logn logm). If instead of lines we have an arrangement ofn line segments, then the maximum number of edges ofm faces isO(m 2/3– n 2/3+2 +n (n) logm) for any>0, where(n) is the functional inverse of Ackermann's function. We give a (randomized) algorithm that produces these faces and takes expected timeO(m 2/3– n 2/3+2 log+n(n) log2 n logm).The first author is pleased to acknowledge partial support by the Amoco Fnd. Fac. Dev. Comput. Sci. 1-6-44862 and the National Science Foundation under Grant CCR-8714565. Work on this paper by the third author has been supported by Office of Naval Research Grant N00014-82-K-0381, by National Science Foundation Grant DCR-83-20085, by grants from the Digital Equipment Corporation, and the IBM Corporation, and by a research grant from the NCRD-the Israeli National Council for Research and Development. A preliminary version of this paper has appeared in theProceedings of the 4th ACM Symposium on Computational Geometry, 1988, pp. 44–55.  相似文献   

3.
We consider several problems involving points and planes in three dimensions. Our main results are: (i) The maximum number of faces boundingm distinct cells in an arrangement ofn planes isO(m 2/3 n logn +n 2); we can calculatem such cells specified by a point in each, in worst-case timeO(m 2/3 n log3 n+n 2 logn). (ii) The maximum number of incidences betweenn planes andm vertices of their arrangement isO(m 2/3 n logn+n 2), but this number is onlyO(m 3/5– n 4/5+2 +m+n logm), for any>0, for any collection of points no three of which are collinear. (iii) For an arbitrary collection ofm points, we can calculate the number of incidences between them andn planes by a randomized algorithm whose expected time complexity isO((m 3/4– n 3/4+3 +m) log2 n+n logn logm) for any>0. (iv) Givenm points andn planes, we can find the plane lying immediately below each point in randomized expected timeO([m 3/4– n 3/4+3 +m] log2 n+n logn logm) for any>0. (v) The maximum number of facets (i.e., (d–1)-dimensional faces) boundingm distinct cells in an arrangement ofn hyperplanes ind dimensions,d>3, isO(m 2/3 n d/3 logn+n d–1). This is also an upper bound for the number of incidences betweenn hyperplanes ind dimensions andm vertices of their arrangement. The combinatorial bounds in (i) and (v) and the general bound in (ii) are almost tight.Work on this paper by the first author has been supported by Amoco Fnd. Fac. Dev. Comput. Sci. 1-6-44862 and by NSF Grant CCR-8714565. Work by the third author has been supported by Office of Naval Research Grant N00014-87-K-0129, by National Science Foundation Grant DCR-82-20085, by grants from the Digital Equipment Corporation, and the IBM Corporation, and by a research grant from the NCRD—the Israeli National Council for Research and Development. An abstract of this paper has appeared in theProceedings of the 13th International Mathematical Programming Symposium, Tokyo, 1988, p. 147.  相似文献   

4.
Laurent–Padé (Chebyshev) rational approximants P m (w,w –1)/Q n (w,w –1) of Clenshaw–Lord type [2,1] are defined, such that the Laurent series of P m /Q n matches that of a given function f(w,w –1) up to terms of order w ±(m+n), based only on knowledge of the Laurent series coefficients of f up to terms in w ±(m+n). This contrasts with the Maehly-type approximants [4,5] defined and computed in part I of this paper [6], where the Laurent series of P m matches that of Q n f up to terms of order w ±(m+n), but based on knowledge of the series coefficients of f up to terms in w ±(m+2n). The Clenshaw–Lord method is here extended to be applicable to Chebyshev polynomials of the 1st, 2nd, 3rd and 4th kinds and corresponding rational approximants and Laurent series, and efficient systems of linear equations for the determination of the Padé–Chebyshev coefficients are obtained in each case. Using the Laurent approach of Gragg and Johnson [4], approximations are obtainable for all m0, n0. Numerical results are obtained for all four kinds of Chebyshev polynomials and Padé–Chebyshev approximants. Remarkably similar results of formidable accuracy are obtained by both Maehly-type and Clenshaw–Lord type methods, thus validating the use of either.  相似文献   

5.
Lets(d, n) be the number of triangulations withn labeled vertices ofS d–1, the (d–1)-dimensional sphere. We extend a construction of Billera and Lee to obtain a large family of triangulated spheres. Our construction shows that logs(d, n)C 1(d)n [(d–1)/2], while the known upper bound is logs(d, n)C 2(d)n [d/2] logn.Letc(d, n) be the number of combinatorial types of simpliciald-polytopes withn labeled vertices. (Clearly,c(d, n)s(d, n).) Goodman and Pollack have recently proved the upper bound: logc(d, n)d(d+1)n logn. Combining this upper bound forc(d, n) with our lower bounds fors(d, n), we obtain, for everyd5, that lim n(c(d, n)/s(d, n))=0. The cased=4 is left open. (Steinitz's fundamental theorem asserts thats(3,n)=c(3,n), for everyn.) We also prove that, for everyb4, lim d(c(d, d+b)/s(d, d+b))=0. (Mani proved thats(d, d+3)=c(d, d+3), for everyd.)Lets(n) be the number of triangulated spheres withn labeled vertices. We prove that logs(n)=20.69424n(1+o(1)). The same asymptotic formula describes the number of triangulated manifolds withn labeled vertices.Research done, in part, while the author visited the mathematics research center at AT&T Bell Laboratories.  相似文献   

6.
The maximal numberl(f) of conjunctions in a dead-end disjunctive normal form (d.n.f.) of a Boolean functionf and the number (f) of dead-end d.n.f. are important parameters characterizing the complexity of algorithms for finding minimal d.n.f. It is shown that for almost all Boolean functionsl(f)2n–1, log2 (f)2n–1log2nlog2log2n (n).Translated from Matematicheskie Zametki, Vol. 4, No. 6, pp. 649–658, December, 1968.  相似文献   

7.
LetG(n) be the set of all nonoriented graphs with n enumerated points without loops or multiple lines, and let vk(G) be the number of mutually nonisomorphic k-point subgraphs of G G(n). It is proved that at least |G(n)| (1–1/n) graphs G G(n) possess the following properties: a) for any k [6log2n], where c=–c log2c–(1–c)×log2(1–c) and c>1/2, we havev k(G) > C n k (1–1/n2); b) for any k [cn + 5 log2n] we havev k(G) = C n k . Hence almost all graphs G G(n) containv(G) 2n pairwise nonisomorphic subgraphs.Translated from Matematicheskie Zametki, Vol. 9, No. 3, pp. 263–273, March, 1971.  相似文献   

8.
Let N+2m ={−m, −m+1, …, −1, 0, 1, …,N−1,N, …,N−1+m}. The present paper is devoted to the approximation of discrete functions of the formf : N+2m → ℝ by algebraic polynomials on the grid Ω N ={0, 1, …,N−1}. On the basis of two systems of Chebyshev polynomials orthogonal on the sets Ω N+m and Ω N , respectively, we construct a linear operatorY n+2m, N =Y n+2m, N (f), acting in the space of discrete functions as an algebraic polynomial of degree at mostn+2m for which the following estimate holds (x ε Ω N ):
(1)
whereE n+m[g,l 2 N+m )] is the best approximation of the function
(1)
by algebraic polynomials of degree at mostn+m in the spacel 2 N+m ) and the function Θ N, α (x) depends only on the weighted estimate for the Chebyshev polynomialsτ k α,α (x, N). Translated fromMatematicheskie Zametki, Vol. 67, No. 3, pp. 460–470, March, 2000.  相似文献   

9.
A Variation of an Extremal Theorem Due to Woodall   总被引:1,自引:0,他引:1  
We consider a variation of an extremal theorem due to Woodall [12, or 1, Chapter 3] as follows: Determine the smallest even integer (3C1,n), such that every n-term graphic sequence = (d1, d2,..., dn) with term sum () = d1 + d2 + ... + dn (3C1,n) has a realization G containing a cycle of length r for each r = 3,4,...,l. In this paper, the values of (3Cl,n) are determined for l = 2m – 1,n 3m – 4 and for l = 2m,n 5m – 7, where m 4.AMS Mathematics subject classification (1991) 05C35Project supported by the National Natural Science Foundation of China (Grant No. 19971086) and the Doctoral Program Foundation of National Education Department of China  相似文献   

10.
Summary For an infinite sequence of independent coin tosses withP(Heads)=p(0,1), the longest run of consecutive heads in the firstn tosses is a natural object of study. We show that the probabilistic behavior of the length of the longest pure head run is closely approximated by that of the greatest integer function of the maximum ofn(1-p) i.i.d. exponential random variables. These results are extended to the case of the longest head run interrupted byk tails. The mean length of this run is shown to be log(n)+klog(n)+(k+1)log(1–p)–log(k!)+k+/–1/2+ r1(n)+ o(1) where log=log1/p , =0.577 ... is the Euler-Mascheroni constant, =ln(1/p), andr 1(n) is small. The variance is 2/62+1/12 +r 2(n)+ o(1), wherer 2(n) is again small. Upper and lower class results for these run lengths are also obtained and extensions discussed.This work was supported by a grant from the System Development Foundation  相似文献   

11.
The rigidity of the complex super-Grassmannian Gr m|n,k|l with 0<k<m, 0<l<n, supposing that (k, l) (1,n–1), (m–1, 1), (1,n–2), (m–2, 1), (2,n–1), (m–1, 2), is proved.Partially supported by Erwin Schrödinger International Institute for Mathematical Physics (Vienna, Austria)  相似文献   

12.
Letp j(m, n) be the number of partitions of (m, n) into at mostj parts. We prove Landman et al.'s conjecture: for allj andn, p j(x, 2n–x) is a maximum whenx-n. More generally we prove that for all positive integersm, n andj, p j(n, m)=pj(m, n)pj(m–1, n+1) ifmn.  相似文献   

13.
In this paper we present efficient deterministic algorithms for various problems involving lines or segments in the plane, using the partitioning algorithm described in a companion paper [A3]. These applications include: (i) anO(m 2/3 n 2/3 · log2/3 n · log/3 (m/n)+(m+n) logn) algorithm to compute all incidences betweenm points andn lines, where is a constant <3.33; (ii) anO(m 2/3 n 2/3 · log5/3 n · log/3 (m/n)+(m+n) logn) algorithm to computem faces in an arrangement ofn lines; (iii) anO(n 4/3 log(+2)/3 n) algorithm to count the number of intersections in a set ofn segments; (iv) anO(n 4/3 log( + 2)/3 n) algorithm to count red-blue intersections between two sets of segments, and (v) anO(n 3/2 log/3 n) algorithm to compute spanning trees with low stabbing number for a set ofn points. We also present an algorithm that, given set ofn points in the plane, preprocesses it, in timeO(nm log+1/2 n), into a data structure of sizeO(m) forn lognmn 2, so that the number of points ofS lying inside a query triangle can be computed inO((n/m) log3/2 n) time.Work on this paper has been supported by Office of Naval Research Grant N00014-87-K-0129, by National Science Foundation Grant DCR-83-20085, and by grants from the Digital Equipment Corporation and the IBM Corporation. A preliminary version of this paper appears in theProceedings of the 5th ACM Symposium on Computational Geometry, 1989, pp. 11–22.  相似文献   

14.
Given a finite group G and a G-free resolution F * of Z, then d G (Im(F m+1F m ))–(–1) mi d G (F i ) is almost always an invariant of G.  相似文献   

15.
Let E/F be a finite separable field extension and let m denote the integral part of log2 [E : F]. David Leep recently showed that if char(F) 2, then for n m the nth power of the fundamental ideal in the Witt ring of E satisfies the equality I n E = I nm F · I m E. The aim of this note is to prove the analogous equality for the Milnor K-groups, that is K n E = K nm F · K m E for n m. In either of these equalities one may not replace m by m – 1, as examples of certain m-quadratic extensions indicate.  相似文献   

16.
A scheme is proposed for the feedback control of distributed-parameter systems with unknown boundary and volume disturbances and observation errors. The scheme consists of employing a nonlinear filter in the control loop such that the controller uses the optimal estimates of the state of the system. A theoretical comparison of feedback proportional control of a styrene polymerization reactor with and without filtering is presented. It is indicated how an approximate filter can be constructed, greatly reducing the amount of computing required.Notation a(t) l-vector noisy dynamic input to system - A(t, a) l-vector function - A frequency factor for first-order rate law (5.68×106 sec–1) - b distance to the centerline between two coil banks in the reactor (4.7 cm) - B k-vector function defining the control action - c(, ) concentration of styrene monomer, molel –1 - C p heat capacity (0.43 cal · g–1 · K–1) - C ij constants in approximate filter, Eqs. (49)–(52) - E activation energy (20330 cal · mole–1) - expectation operator - f(t,...) n-vector function - g 0,g 1(t,...) n-vector functions - h(t, u) m-vector function relating observations to states - H(t) function defined in Eq. (36) - k dimensionality of control vectorv(x, t) - k i constants in approximate filter, Eqs. (49)–(52) - K dimensionless proportional gain - l dimensionality of dynamic inputa(t) - m dimensionality of observation vectory(t) - n dimensionality of state vectoru(x, t) - P (vv)(x, s, t) n×n matrix governed by Eq. (9) - P (va)(x, t) n×l matrix governed by Eq. (10) - P (aa)(t) l×l matrix governed by Eq. (11) - q i (t) diagonal elements ofm×m matrixQ(x, s, t) - Q(x, s, t) m×m weighting matrix - R universal gas constant (1.987 cal · mole–1 · K–1) - R(x, s, t) n×n weighting matrix - R i (t) n×n weighting matrix - s dimensionless spatial variable - S(x, s, t) matrix defined in Eq. (11) - t dimensionless time variable - T(, ) temperature, K - u(x, t) n-dimensional state vector - u c (t) wall temperature - u d desired value ofu 1(1,t) - u c * reference control value ofu c - u c max maximum value ofu c - u c min minimum value of c - v(x, t) k-dimensional control vector - W(t) l×l weighting matrix - x dimensionless spatial variable - y(t) m-dimensional observation vector - i constants in approximate filter, Eqs. (49)–(52) - dimensionless parameter defined in Eq. (29) - H heat of reaction (17500 cal · mole–1) - dimensionless activation energy, defined in Eq. (29) - (x) Dirac delta function - (x, t) m-dimensional observation noise - thermal conductivity (0.43×10–3 cal · cm–1 · sec–1 · K–1) - density (1 g · cm–3) - time, sec - dimensionless parameter defined in Eq. (29) - spatial variable, cm - * reference value - ^ estimated value  相似文献   

17.
This paper studies a random walk based on random transvections in SL n(F q ) and shows that, given > 0, there is a constant c such that after n + c steps the walk is within a distance from uniform and that after nc steps the walk is a distance at least 1 – from uniform. This paper uses results of Diaconis and Shahshahani to get the upper bound, uses results of Rudvalis to get the lower bound, and briefly considers some other random walks on SL n(F q ) to compare them with random transvections.  相似文献   

18.
We present a data structure for ray-shooting queries in a set of convex fat polyhedra of total complexity n in . The data structure uses O(n2+ε) storage and preprocessing time, and queries can be answered in O(log2n) time. A trade-off between storage and query time is also possible: for any m with n<m<n2, we can construct a structure that uses O(m1+ε) storage and preprocessing time such that queries take time.We also describe a data structure for simplex intersection queries in a set of n convex fat constant-complexity polyhedra in . For any m with n<m<n3, we can construct a structure that uses O(m1+ε) storage and preprocessing time such that all polyhedra intersecting a query simplex can be reported in O((n/m1/3)logn+k) time, where k is the number of answers.  相似文献   

19.
Summary Consider the stationary sequenceX 1=G(Z 1),X 2=G(Z 2),..., whereG(·) is an arbitrary Borel function andZ 1,Z 2,... is a mean-zero stationary Gaussian sequence with covariance functionr(k)=E(Z 1 Z k+1) satisfyingr(0)=1 and k=1 |r(k)| m < , where, withI{·} denoting the indicator function andF(·) the continuous marginal distribution function of the sequence {X n }, the integerm is the Hermite rank of the family {I{G(·) x} –F(x):xR}. LetF n (·) be the empirical distribution function ofX 1,...,X n . We prove that, asn, the empirical processn 1/2{F n (·)-F(·)} converges in distribution to a Gaussian process in the spaceD[–,].Partially supported by NSF Grant DMS-9208067  相似文献   

20.
We investigate the rate of convergence of series of the form
where λ = (λn), 0 = λ0 < λn ↑ + ∞, n → + ∞, β = {βn: n ≥ 0} ⊂ ℝ+, and τ(x) is a nonnegative function nondecreasing on [0; +∞), and
where the sequence λ = (λn) is the same as above and f (x) is a function decreasing on [0; +∞) and such that f (0) = 1 and the function ln f(x) is convex on [0; +∞).__________Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 56, No. 12, pp. 1665 – 1674, December, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号