首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper, the ionic conductivity and the dielectric relaxation properties on the poly(vinyl alcohol)-CF3COONH4 polymer system have been investigated by means of impedance spectroscopy measurements over wide ranges of frequencies and temperatures. The electrolyte samples were prepared by solution casting technique. The temperature dependence of the sample’s conductivity was modeled by Arrhenius and Vogel-Tammann-Fulcher (VTF) equations. The highest conductivity of the electrolyte of 3.41×10 − 3 (Ωcm) − 1 was obtained at 423 K. For these polymer system two relaxation processes are revealed in the frequency range and temperature interval of the measurements. One is the glass transition relaxation (α-relaxation) of the amorphous region at about 353 K and the other is the relaxation associated with the crystalline region at about 423 K. Dielectric relaxation has been studied using the complex electric modulus formalism. It has been observed that the conductivity relaxation in this polymer system is highly non-exponential. From the electric modulus formalism, it is concluded that the electrical relaxation mechanism is independent of temperature for the two relaxation processes, but is dependent on composition.  相似文献   

2.
The conductivity and capacitance of bulk and thin-film metal-glass-metal structures with the glass based on the composition: 32.56% V2O5, 46.18% B2O3, and 21.26% CaO (mole %) are measured in the frequency interval 2·102–2·104 Hz and the temperature interval 300–500°K. The frequency-temperature dependences of the real and imaginary parts of the complex dielectric constant calculated from the results of the measurements indicate the presence of the process of relaxation polarization in the glass under investigation. The parameters of the relaxation process are determined. It is proposed that the presence of the relaxation component of the conductivity and losses is due to localization of small-radius polarons (SRP) in the vicinity of positively charged defect centers (bound SRP).Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 85–89.  相似文献   

3.
We report the ac conductivity and relaxation behavior analysis for a heterogeneous polymer–clay nanocomposite (PNC) having composition (polyacrylonitrile)8LiCF3SO3 + x wt.% dodecylamine modified montmorillonite. Charge transport behavior in an ionically conducting PNC has been analyzed systematically and correlated with the macroscopic parameters like polymer glass transition temperature and available free mobile charge carriers. Intercalation of cation coordinated polymer into the nanometric clay channels has been confirmed by high-resolution transmission electron microscopy. The electrical properties of the intercalated PNC films have been studied using complex impedance/admittance spectroscopy. Excellent correlation of relaxation behavior with polymer glass transition temperature (T g) confirmed the objectives of the work. An analysis of dielectric relaxation indicates that PNC films are lossy when compared with polymer–salt film. This result is a direct outcome of faster ion dynamics leading to strong electrode polarization effect due to the accumulation of charge carriers at the interface.  相似文献   

4.
Glasses having compositions xLi2O∙(85 − x)Bi2O3∙15SiO2 (x = 35, 40, and 45 mol%) were prepared by normal melt quenching technique. Electrical relaxation and conductivity in these glasses were studied using impedance spectroscopy in the frequency range from 20 Hz to 1 MHz and in the temperature range from 453 to 603 K. The ac and dc conductivities, activation energy of the dc conductivity and relaxation frequency were extracted from the impedance spectra. The dc conductivity increases with increase in Li2O content providing modified glass structure and large number of mobile lithium ions. Similar values of activation energy for dc conduction and for conductivity relaxation time indicate that the ions overcome the same energy barrier while conducting and relaxing. The non-exponential character of relaxation processes increases with decrease in stretched exponential parameter ‘β’ as the composition parameter ‘x’ increases. The observed conductivity spectra follow a power law with exponent ‘s’ which increases regularly with frequency and approaches unity at higher frequencies. Nearly constant losses (NCL) characterize this linearly dependent region of the conductivity spectra. A deviation from the ‘master curve’ for various isotherms of conductivity spectra was also observed in the high-frequency region and at low temperatures, which supports the existence of different dynamic processes like NCL in addition to the ion hopping processes in the investigated glass system.  相似文献   

5.
In electrical properties, the dc conductivity and photoconductivity measurements have been made in vacuum evaporated thin films of a-(Se70Te30)100−x(Se98Bi2)x system, in the temperature range (308–355 K). It has been observed that dc conductivity and activation energy depend on the Bi concentration. Photocurrent dependence on incident radiation has also been observed which follow the power law (IphFγ). Transient photocurrent exhibits the non-exponential decay time. All these parameters show that the recombination within the localized states is predominant. In crystallization kinetics, the heating rate dependence of glass transition and crystallization temperatures is studied to calculate the activation energy for thermal relaxation and activation energy for crystallization. The composition dependence of the activation energy for thermal relaxation and activation energy for crystallization is discussed in terms of the structure of Se–Te–Bi glassy system.  相似文献   

6.
Li3V2(PO4)3 glass-ceramic nanocomposites, based on 37.5Li2O-25V2O5-37.5P2O5 mol% glass, were successfully prepared via heat treatment (HT) process. The structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD patterns exhibit the formation of Li3V2(PO4)3 NASICON type with monoclinic structure. The grain sizes were found to be in the range 32–56 nm. The effect of grain size on the dynamics of Li+ ions in these glass-ceramic nanocomposites has been studied in the frequency range of 20 Hz–1 MHz and in the temperature range of 333–373 K and analyzed by using both the conductivity and modulus formalisms. The frequency exponent obtained from the power law decreases with the increase of temperature, suggesting a weaker correlation among the Li+ ions. Scaling of the conductivity spectra has also been performed in order to obtain insight into the relaxation mechanisms. The imaginary modulus spectra are broader than the Debye peak-width, but are asymmetric and distorted toward the high frequency region of the maxima. The electric modulus data have been fitted to the non-exponential Kohlrausch–Williams–Watts (KWW) function and the value of the stretched exponent β is fairly low, suggesting a higher ionic conductivity in the glass and its glass-ceramic nanocomposites. The advantages of these glass-ceramic nanocomposites as cathode materials in Li-ion batteries are shortened diffusion paths for Li+ ions/electrons and higher surface area of contact between cathode and electrolyte.  相似文献   

7.
The dc and thermal conductivities of five different compositions of the chalcogenide glass system Se75Ge25–x Sb x have been studied in a temperature range below T g. The dc conductivity results indicate that each composition has a single activation energy in the considered temperature range. The coefficient of thermal conductivity increased linearly with temperature below T g for the compositions investigated. The increase of Sb content in the chalcogenide glass system leads to an increased coefficient of electrical conductivity , an increased coefficient of thermal conductivity , and to a decreased activation energy E and pre-exponential factor 0. The observed compositional dependencies of and E have been correlated with the increase of weak bond density and the decrease of covalent bond density in the structure of the compositions investigated with increasing Sb content at the expense of Ge content. The decrease in 0 and the increase in has been, respectively, correlated with the decrease in mobility and the increase in phonon velocity.  相似文献   

8.
The bis (3-dimethylammonium-1-propyne) pentachlorobismuthate (III) exhibits a structural phase transition at T1?=?(337?±?2?K), which has been characterized by differential scanning calorimetric, X-ray powder analysis, AC conductivity and dielectric measurements. The dielectric dispersion yielded the real and imaginary parts of impedance of (C5H10N)2BiCl5 in the form of a semicircle in a complex plane. Besides, a Cole?CCole plot was observed at frequencies ranging from 209?Hz to 5?MHz, whose result was found to fit the theoretical resistor?Ccapacitor parallel circuit model. The temperature dependence of the electrical conductivity in the different phases follows the Arrhenius law. The frequency-dependent conductivity data were fitted in the modified power law: $ \sigma = {\sigma_{dc}} + {B_1}(T){\omega^{{s_1}}} + {B_2}(T){\omega^{{s_2}}} $ . The imaginary part of the permittivity constant is analyzed with the Cole?CCole formalism. With regard to the modulus plot, it can be characterized by full width at half height or in terms of a non-exponential decay function $ \phi (t) = \exp {\left( {\frac{{ - t}}{{{\tau_\sigma }}}} \right)^\beta } $ . Besides, the activation energy responsible for relaxation has been evaluated and found to be close the DC conductivity.  相似文献   

9.
The coupled spin-lattice and lattice-bath differential equations are solved numerically for the special case of terbium ethyl sulfate. The relaxation decay shows non-exponential behaviour if the lifetime τ of the phonons in direct contact with the spin-system is equal or greater thanT 1/b.T 1 is the spin-lattice relaxation time andb the ratio of the specific heats of the spin-system and the phonons in contact with the spin-system. The effective (measured) relaxation timeT eff depends on the initial disturbance of the spin-system. In a second paper measurements are published which show these predicted effects. In these experiments there has been found a severe phonon bottleneck in the terbium ethyl sulfate.  相似文献   

10.
Dielectric permittivity and conductivity relaxation in polyethylene oxide (PEO)-LiClO4 salt polymer electrolytes have been investigated for different lithium ion concentrations. We have observed that imaginary modulus spectra exhibit asymmetric maxima with peak-width much broader than that of the Debye peak and are skewed toward the high frequency sides of the maxima. The charge carriers for the electrolyte having higher lithium salt concentration relax much faster than that for other electrolytes and produces higher conductivity. The modulus data have been fitted using non-exponential Kohlrausch-Williams-Watts (KWW) function φ(t). We have observed that the value of the non-exponential parameter (β) is fairly low and nearly constant for different salt concentrations. The low value of β suggests a wide distribution of non-exponential relaxation times. Using the scaling of modulus data we have observed that the relaxation dynamics of charge carriers in these PEO-Li salt based electrolytes is independent of temperature and salt concentration.  相似文献   

11.
《Solid State Ionics》1987,23(3):225-233
The electrical conductivity of AgIAg2MoO4 glass has been studied over wide composition, frequency and temperature range. The observed frequency dependent conductivity has been explained by using Jonscher's universal expression. The ionic conductivity and conductivity relaxation calculated from impedance and modulus spectra respectively were found to be thermally activated; and the activation energy obtained from both measurements are comparable. Systematic trends in the variation of the Kohlrausch parameter with composition, mobile ion concentration and activation energy have been observed and the results are compared with those obtained in other materials.  相似文献   

12.
CoO and Li2O mixed with borotellurite glasses in the compositions, (B2O3)0.2-(TeO2)0.3-(CoO) x -(Li2O)0.5?x, where x = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50 were synthesized by fast cooling the melt to room temperature. Absence of crystalline phases in the samples was confirmed by X-ray diffraction studies. Changes in dielectric properties with frequency and temperature over wide ranges have been measured. Dielectric constant and loss increased with increase in CoO content. AC conductivity has been analyzed using Mott’s small polaron model and activation energy was determined. Activation energy decreased and conductivity increased with increase in CoO content up to 0.3 mole fractions, and they behaved oppositely for higher concentration of CoO. This observed change of trend in activation energy and conductivity at 0.3 mole fraction of CoO ascribed to switch over of conduction mechanism occurring from predominantly ionic to electronic regime. For the first time, a transition of conduction mechanism is observed in borotellurite glasses. Temperature and composition independent relaxation mechanism in these glasses has been confirmed by plotting the scaled conductivity master curves. Hunt’s model has been invoked to understand the frequency dispersion of conductivity.
Graphical abstract Plots of ln(ε′′) versus ln(F) for BTCL2 glass at different temperatures
  相似文献   

13.
Spin-lattice relaxation processes in 13CH3 groups in methyl compounds are studied both theoretically and experimentally. The four spin-½ nuclei in such methyl groups give rise to 16 spin-rotational states, which are split by rotational tunnelling. From the corresponding populations (15 independent) five long lived combinations are formed: the 13C magnetization M C, proton magnetization M H, tunnelling energy TE, rotational polarization RP and dipolar energy DE. Their spin-lattice relaxation via the transitions induced by the 13C-proton dipolar interaction is studied in detail. Direct relaxation rates and coupling terms between these combinations are derived. Predictions are compared with experimental data for 13C spin-lattice relaxation at 75.4 MHz in 99% enriched (only methyl carbons enriched) single crystal of aspirin. Above 40 K, the M C recovery is exponential and describable in terms of the direct relaxation transitions without couplings. The same is true for the initial relaxation in the region of non-exponential relaxation between 30 K and 40 K. The orientation dependence of the initial relaxation rate agrees with the theoretical calculations. The non-exponentiality is related to resonant level-crossing transitions with ωt, + ωC = ωH, where the angular frequencies represent rotational tunnelling and carbon and proton resonances, respectively. The resonant transitions produce couplings between M C, M H and TE that are described quite accurately by the present model.  相似文献   

14.
We present a magnetic study of the insulating perovskite LaMn1−xTixO3+δ (0<x0.2) including measurements of magnetization, susceptibility, and magnetic relaxation. The Curie temperature was found to decrease with increasing content of Ti. Two distinct magnetic transitions, irreversibility, non-exponential relaxation and aging effects confirm a reentrant spin–glass state for x=0.2. The time decay of the magnetization has an algebraic functional form for times up to 2 h. The specific heat also displays characteristic features of a spin–glass system by a linear low-temperature dependence and a broadened peak near the temperature of the reentrant transition.  相似文献   

15.
16.
The ac electrical conductivity, DSC calorimetry and density data for pure Na4UO2(SO4)3 and for compound incorporating guest ions Rb+, Cd2+, Gd3+, SiO 4 4– in the glass, quasi-crystalline intermediate and crystalline phases are reported. The glass phase conductivity data show an increase in Na+ conductivity by a factor 103 relative to pure crystalline Na2SO4 in the low temperature (LT) region, i.e. 180°C. There is no onset of phase transition up to 260°C. The distinct conductivity regimes prior to devitrification in the glass suggest that higher energy or excited structural states/configurations can exist in the glass phase. The apparent activation energy Q c value 76±5 kJ/mole for the glass state of all compositions is in excellent agreement with the Na2SO4 III Q c value. The conductivity regime immediately after devitrification with Q c of 40±3 kJ/mole represents the stable intermediate phase. The conductivity of the final product of devitrification on cooling resembles crystalline behavior except for (Na3.5Rb0.5)UO2(SO4)3. A gradual jump in conductivity accompanies the transition in the crystalline sample. The Q c value is 75±5 kJ/mole for the (HT) phase conductivity in the heating mode but remains constant at 66±5 kJ/mole for the (LT) phase in the heating mode and for both and phases in the cooling mode.The excellent conductivity-volume, i.e. /V correlation is consistent with the free volume contribution to conductivity enhancement and the percolation-type mechanism of transport.This study received partial support from the Natural Sciences and Engineering Research Council of Canada  相似文献   

17.
Glass systems of composition xAg2SO4–20Ag2O–(80?x) [0.50 B2O3–0.50 TeO2], where x = 5, 10, 15, 20, 25 and 30 mol% have been prepared by melt-quenching technique. Frequency- and temperature-dependent conductivity measurements have been carried out in the frequency range 10 Hz to 10 MHz and at a temperature range of 303–353 K, respectively. DC conductivities exhibit Arrhenius behavior over the entire temperature range with a single activation barrier. Addition of Ag2SO4 expands the glass network and, consequently, conductivity increases. This suggests that the structure and network expansion are the key parameters for enhancing conductivity. Impedance spectra of these glasses show a single semicircle, indicating one type of conduction. AC conductivity behavior of the glasses was analyzed using both single power law and Kolhrauh–William–Watts (KWW) stretched exponential relaxation function. The power law exponent (s) is temperature-dependent, while the stretched exponent (β) is insensitive to temperature. Scaling behavior has also been carried out using reduced plots of conductivity with frequency, which suggests the ion transport mechanism remains unaffected by temperature and composition.  相似文献   

18.
B Singh  P S Tarsikka  L Singh 《Pramana》2002,59(4):653-661
Studies of dielectric relaxation and ac conductivity have been made on three samples of sodium tungsten phosphate glasses over a temperature range of 77–420 K. Complex relative permitivity data have been analyzed using dielectric modulus approach. Conductivity relaxation frequency increases with the increase of temperature. Activation energy for conductivity relaxation has also been evaluated. Measured ac conductivity (σm(ω)) has been found to be higher than σdc at low temperatures whereas at high temperature σm(ω) becomes equal to σdc at all frequencies. The ac conductivity obeys the relation σac(ω)=Aω S over a considerable range of low temperatures. Values of exponent S are nearly equal to unity at about 78 K and the values decrease non-linearly with the increase of temperature. Values of the number density of states at Fermi level (N(E F)) have been evaluated at 80 K assuming values of electron wave function decay constant α to be 0.5 (Å)?1. Values of N(E F) have the order 1020 which are well within the range suggested for localized states. Present values of N(E F) are smaller than those for tungsten phosphate glasses.  相似文献   

19.
Thermally stimulated depolarization currents, TSDC, wide-angle X-ray scattering, WAXS, differential scanning calorimetry, DSC, and polarized light optical microscopy, PLOM, have been used to examine poly(L-lactide)-b -poly( -caprolactone) diblock copolymers in a wide composition range. Both components are crystallizable and the miscibility in the amorphous phase has been determined from the behavior of the primary relaxations which are the dielectric manifestation of the glass transition, and also from the superstructural morphology revealed by PLOM and the compositional dependence of the melting points as determined by DSC. Distinct segmental mobilities in the amorphous phase which can be well resolved by TSDC are present; the mode of the slower component shifts to lower temperatures as the PCL content increases while the glass transition of neat PCL is present for all compositions. A relaxation times bimodal distribution is apparent for PCL-rich copolymers. The composition dependence of the multiple glass transitions detected in these weakly segregated copolymers are predicted by the self-concentration model for a miscible blend made of components with a large Tg contrast.  相似文献   

20.
For different molecular glass-forming liquids the critical temperaturesT c predicted by the mode coupling theory of glass transition are compared with the temperaturesT b at which a single relaxation process seems to bifurcate into slow and faster relaxations. The latter temperatures are taken from the magnetic resonance data available in the literature. Both temperatures coincide within experimental accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号