首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Omari E  Lee H  Varghese T 《Ultrasonics》2011,51(6):758-767
Quantitative ultrasound features such as the attenuation slope, sound speed and scatterer size, have been utilized to evaluate pathological variations in soft tissues such as the liver and breast. However, the impact of variations in the sound speed and backscatter due to underlying fat content or fibrotic changes, on the attenuation slope has not been addressed. Both numerical and acoustically uniform tissue-mimicking experimental phantoms are used to demonstrate the impact of sound speed variations on attenuation slope using clinical real-time ultrasound scanners equipped with linear array transducers. Radiofrequency data at center frequencies of 4 and 5 MHz are acquired for the experimental and numerical phantoms respectively. Numerical phantom sound speeds between 1480 and 1600 m/s in increments of 20 m/s for attenuation coefficients of 0.3, 0.4, 0.5, 0.6, and 0.7 dB/cm/MHz are simulated. Variations in the attenuation slope when the backscatter intensity of the sample is equal, 3 dB higher, and 3 dB lower than the reference is also evaluated. The sound speed for the experimental tissue-mimicking phantoms were 1500, 1540, 1560 and 1580 m/s respectively, with an attenuation coefficient of 0.5 dB/cm/MHz. Radiofrequency data is processed using three different attenuation estimation algorithms, i.e. the reference phantom, centroid downshift, and a hybrid method. In both numerical and experimental phantoms our results indicate a bias in attenuation slope estimates when the reference phantom sound speed is higher (overestimation) or lower (underestimation) than that of the sample. This bias is introduced via a small spectral shift in the normalized power spectra of the reference and sample with different sound speeds. The hybrid method provides the best estimation performance, especially for sample attenuation coefficient values lower than that of the reference phantom. The performance of all the methods deteriorates when the attenuation coefficient of the reference phantom is lower than that of the sample. In addition, the hybrid method is the least sensitive to sample backscatter intensity variations.  相似文献   

2.
Ergün AS 《Ultrasonics》2011,51(7):786-794
Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived “rule of thumb” expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4 cm acoustic aperture, and for a two-dimensional array of 4 × 4 cm2 acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86 MHz, and 0.79 MHz, respectively, when the target depth is 4 cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9 MHz and 0.86 MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well.  相似文献   

3.
Traffic noise attenuation at different 1/3-octave frequencies is measured at three vegetation sites and a control site in Delhi, the capital city of India. The study indicates that attenuation generally increases with frequency. At low frequencies, maxima (between 10 and 16 dB) in relative attenuation are observed in the frequency interval between 315 and 400 Hz. Comparatively greater relative attenuation (>20 dB) is observed in the high frequency range between 10 and 12.5 kHz. A significantly higher relative attenuation of more than 24 dB is observed characteristically at 3.15 kHz at all the vegetation sites. The results indicate that vegetation belts could be used as effective barriers for traffic noise control along the roadsides.  相似文献   

4.
We have previously reported on the equivalent scatterer size, attenuation coefficient, and axial strain properties of atherosclerotic plaque ex vivo. Since plaque structure and composition may be damaged during a carotid endarterectomy procedure, characterization of in vivo properties of atherosclerotic plaque is essential. The relatively shallow depth of the carotid artery and plaque enables non-invasive evaluation of carotid plaque utilizing high frequency linear-array transducers. We investigate the ability of the attenuation coefficient and equivalent scatterer size parameters to differentiate between calcified, and lipidic plaque tissue. Softer plaques especially lipid rich and those with a thin fibrous cap are more prone to rupture and can be classified as unstable or vulnerable plaque. Preliminary results were obtained from 10 human patients whose carotid artery was scanned in vivo to evaluate atherosclerotic plaque prior to a carotid endarterectomy procedure. Our results indicate that the equivalent scatterer size obtained using Faran’s scattering theory for calcified regions are in the 120–180 μm range while softer regions have larger equivalent scatterer size distribution in the 280–470 μm range. The attenuation coefficient for calcified regions as expected is significantly higher than that for softer regions. In the frequency bandwidth ranging from 2.5 to 7.5 MHz, the attenuation coefficient for calcified regions lies between 1.4 and 2.5 dB/cm/MHz, while that for softer regions lies between 0.3 and 1.3 dB/cm/MHz.  相似文献   

5.
The objective of the study was to acoustically characterize trisacryl polymeric microparticles (TMP), which are derived from biocompatible embolic agents.With significant acoustic properties, these polymeric particles could be potentially used as targeted ultrasound contrast agents, directed towards a specific site, with ligands conjugation on the polymeric network surface. In the in vitro study, a pulser/receiver (PRF of 1 kHz), associated to different transducers (5, 10 and 15 MHz), was used to measure the acoustic properties of the TMP inserted in a Couette flow device. Acoustic characterization according to TMP concentration (0.12-15.63 mg/ml), frequency (4.5-17 MHz, defined by each transducer bandwidth), ultrasound pressure (137-378 kPa) and exposure time (0-30 min) was conducted. Particle attenuation was also evaluated according to TMP concentration and emission frequency. Backscattering increased non linearly with concentration and maximum enhancement was of 16.4 dB ± 0.89 dB above 7.8 mg/ml. This parameter was found non-linear with increasing applied pressure and no harmonic oscillation could be noticed. Attenuation reached approximately 1.4 dB/cm at 15 MHz and for the 15.6 mg/ml suspension.The TMP have revealed in vitro ultrasound properties comparable to those observed with known contrast agents, studied in similar in vitro systems. However, such set-ups combined with a rather aqueous suspending medium, have some limitations and further investigations need now to be conducted to approach in vivo conditions in terms of flow and blood environment.  相似文献   

6.
To effectively postpone preterm birth, cervical ripening needs to be detected and delayed. As the cervix ripens, the spacing between the collagen fibers increases and fills with water, hyaluronan, decorin, and enzymes suggesting that the ultrasonic attenuation of the cervix should decrease. The decrease in ultrasonic attenuation may be detectable, leading to an effective means of detecting cervical ripening. Herein, the traditional attenuation slope-estimation algorithm based on measuring the downshift in center frequency of the ultrasonic backscattered signal with propagation depth was modified and applied to the cervix of rats. The modified algorithm was verified using computer simulations and an ex vivo tissue sample before being evaluated in in vivo animal studies. Spherically-focused f/3 transducers with 33-MHz center frequencies and with 9-mm focal lengths were used in both the simulations and experiments. The accuracy was better than 15% in the simulations, and the attenuation slope of the cervix in the ex vivo experiment was 2.6+/-0.6 dB/cm-MHz, which is comparable to 2.5+/-0.4 dB/cm-MHz measured using a through-transmission insertion loss technique. For the in vivo experiments, a statistically significant effect of ultrasonic attenuation with gestational age was not observed. The large variances in the in vivo results were most likely due to the natural variation in attenuation for biological tissue between animals.  相似文献   

7.
Attenuation of ultrasound in post rigor bovine skeletal muscle   总被引:4,自引:0,他引:4  
A pulse transmission method for measuring the attenuation of 1-7 MHz ultrasound in bovine skeletal muscle is described. Measurements of the attenuation coefficient at -20, 0, 20 and 40 degrees C conformed to the relation alpha = Afn, where A and n are temperature-dependent coefficients and f is the frequency. alpha/f varied slowly with frequency, and at 4 MHz and 20 degrees C mean values were 1.3 dB cm-1 MHz-1 along the fibres and 0.55 dB cm-1 MHz-1 across the fibres. These data are lower than most previous measurements of skeletal muscle, but comparable with recent measurements of canine heart muscle.  相似文献   

8.
Miniature flat ultrasound transducers have shown to be effective for a large variety of thermal therapies, but the associated superficial heating implicates developing original strategies in order to extend therapeutic depth. The goal of the present paper is to use ultrasound contrast agents (UCA) to increase remote attenuation and heating. Theoretical simulations demonstrated that increasing attenuation from 0.27 to 0.8 Np/cm at 10 MHz beyond a distance of 18 mm from the transducer should result in longer thermal damages due to protein coagulation in a tissue mimicking phantom. Contrast agents (BR14, Bracco, Plan-les-Ouates, Switzerland) were embedded in thermo-sensitive gel and attenuations ranging from 0.27 to 1.33 Np/cm were measured at 10 MHz for concentrations of BR14 between 0 and 4.8%. Thermal damages were then induced in several gels, which had different layering configurations. Thermal damages, 12.8 mm in length, were obtained in homogeneous gels. When mixing contrast agents at a concentration of 3.2% beyond a first 18 mm-thick layer of homogeneous gel, the thermal damages reached 21.5 mm in length. This work demonstrated that contrast agents can be used for increasing attenuation remotely and extending therapeutic depth induced by a non-focused transducer. Additional work must be done in vivo in order to verify the remote-only distribution of bubbles and associated increase in attenuation.  相似文献   

9.
A pilot study was carried out to investigate the performance of ultrasound stiffness imaging methods namely Ultrasound Elastography Imaging (UEI) and Acoustic Radiation Force Impulse (ARFI) Imaging. Specifically their potential for characterizing different classes of solid mass lesions was analyzed using agar based tissue mimicking phantoms. Composite tissue mimicking phantom was prepared with embedded inclusions of varying stiffness from 50 kPa to 450 kPa to represent different stages of cancer. Acoustic properties such as sound speed, attenuation coefficient and acoustic impedance were characterized by pulse echo ultrasound test at 5 MHz frequency and they are ranged from (1564 ± 88 to 1671 ± 124 m/s), (0.6915 ± 0.123 to 0.8268 ± 0.755 db cm-1 MHz-1) and (1.61×106 ± 0.127 to 1.76 × 106 ± 0.045 kg m-2 s-1) respectively. The elastic property Young’s Modulus of the prepared samples was measured by conducting quasi static uni axial compression test under a strain rate of 0.5 mm/min upto 10 % strain, and the values are from 50 kPa to 450 kPa for a variation of agar concentration from 1.7% to 6.6% by weight. The composite phantoms were imaged by Siemens Acuson S2000 (Siemens, Erlangen, Germany) machine using linear array transducer 9L4 at 8 MHz frequency; strain and displacement images were collected by UEI and ARFI. Shear wave velocity 4.43 ± 0.35 m/s was also measured for high modulus contrast (18 dB) inclusion and X.XX m/s was found for all other inclusions. The images were pre processed and parameters such as Contrast Transfer Efficiency and lateral image profile were computed and reported. The results indicate that both ARFI and UEI represent the abnormalities better than conventional US B mode imaging whereas UEI enhances the underlying modulus contrast into improved strain contrast. The results are corroborated with literature and also with clinical patient images.  相似文献   

10.
Premature delivery is the leading cause of infant mortality in the United States. Currently, premature delivery cannot be prevented and new treatments are difficult to develop due to the inability to diagnose symptoms prior to uterine contractions. Cervical ripening is a long period that precedes the active phase of uterine contractions and cervical dilation. The changes in the microstructure of the cervix during cervical ripening suggest that the ultrasonic attenuation should decrease. The objective of this study is to use the reference phantom algorithm to estimate the ultrasonic attenuation in the cervix of pregnant human patients. Prior to applying the algorithm to in vivo human data, two homogeneous phantoms with known attenuation coefficients were used to validate the algorithm and to find the length and the width of the region of interest (ROI) that achieves the smallest error in the attenuation coefficient estimates. In the phantom data, we found that the errors in the attenuation coefficients estimates are less than 12% for ROIs that contain 40 wavelengths or more axially and 30 echo lines or more laterally. The reference phantom algorithm was then used to obtain attenuation maps of the echoes from two human pregnant cervices at different gestational ages. It was observed that the mean of the attenuation coefficient estimates in the cervix of the patient at a more advanced gestational age is smaller than the mean of the attenuation coefficient estimates in the cervix of the patient at an earlier gestational age which suggests that ultrasonic attenuation decreases with increasing gestational age. We also observed a large variance between the attenuation coefficient estimates in the different regions of the cervix due to the natural variation in tissue micro-structures across the cervix. The preliminary results indicate that the algorithm could potentially provide an important diagnostic tool for diagnosing the risk of premature delivery.  相似文献   

11.
The slow compressional wave in air-saturated aluminum foams was studied by means of ultrasonic transverse transmission method over a frequency range from 0.2 MHz to 0.8 MHz. The samples investigated have three different cell sizes or pores per inch (5, 10 and 20 ppi) and each size has three aluminum volume fractions (5%, 8% and 12% AVF). Phase velocities show minor dispersion at low frequencies but remain constant after 0.7 MHz. Pulse broadening and amplitude attenuation are obvious and increase with increasing ppi. Attenuation increases considerably with AVF for 20 ppi foams. Tortuosity ranges from 1.003 to 1.032 and increases with AVF and ppi. However, the increase of tortuosity with AVF is very small for 10 and 20 ppi samples.  相似文献   

12.
We investigate the effects of low cut-off frequency of optical receiver on the performance of lightwave systems. The results show that we can reduce the tone-induced power penalty by ∼0.8 dB (tone frequency = 1 MHz) using a high-pass filter in the optical receiver. In addition, our calculation shows that the power penalty can be negligible (<0.1 dB) even when the low cut-off frequency of the 10 Gb/s optical receiver is increased up to ∼10 MHz.  相似文献   

13.
Numerical simulations (finite-difference time domain) are compared to experimental results of ultrasound wave propagation through human trabecular bones. Three-dimensional high-resolution microcomputed tomography reconstructions served as input geometry for the simulation. The numerical simulation took into account scattering, but not absorption. Simulated and experimental values of the attenuation coefficients (alpha, dB/cm) and the normalized broadband ultrasound attenuation (nBUA, dB/cm/MHz) were measured and compared on a set of 28 samples. While experimental and simulated nBUA values were highly correlated (R(2)=0.83), and showed a similar dependence with bone volume fraction, the simulation correctly predicted experimental nBUA values only for low bone volume fraction (BV/TV). Attenuation coefficients were underestimated by the simulation. The absolute difference between experimental and simulated alpha values increased with both BV/TV and frequency. As a function of frequency, the relative difference between experimental and simulated alpha values decreased from 60% around 400 kHz to 30% around 1.2 MHz. Under the assumption that the observed discrepancy expresses the effect of the absorption, our results suggests that nBUA and its dependence on BV/TV can be mostly explained by scattering, and that the relative contribution of scattering to alpha increases with frequency, becoming predominant (>50 %) over absorption for frequencies above 600 kHz.  相似文献   

14.
The conduction noise suppression in radio frequency region using film type of the Fe-filled carbon nanotubes and its epoxy composite was evaluated on a coplanar waveguide. Fe in carbon nanotubes have shown α-Fe crystalline structure and had a coercivity of 650 Oe. The magnitudes of the signal attenuation of Fe-filled carbon nanotubes on coplanar waveguide were shown in the range of about 10–18 dB/cm at 20 GHz (the stop-band frequency region). The power losses of these films exhibited 65–85% at 20 GHz in the stop-band frequency.  相似文献   

15.
High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (−7.7 dB), THD (−74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the −6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications.  相似文献   

16.
The primary objective of this work was to develop and optimize the calibration techniques for ultrasonic hydrophone probes used in acoustic field measurements up to 100 MHz. A dependable, 100 MHz calibration method was necessary to examine the behavior of a sub-millimeter spatial resolution fiber optic (FO) sensor and assess the need for such a sensor as an alternative tool for high frequency characterization of ultrasound fields. Also, it was of interest to investigate the feasibility of using FO probes in high intensity fields such as those employed in HIFU (high intensity focused ultrasound) applications. In addition to the development and validation of a novel, 100 MHz calibration technique the innovative elements of this research include implementation and testing of a prototype FO sensor with an active diameter of about 10 μm that exhibits uniform sensitivity over the considered frequency range and does not require any spatial averaging corrections up to about 75 MHz. The results of the calibration measurements are presented and it is shown that the optimized calibration technique allows the sensitivity of the hydrophone probes to be determined as a virtually continuous function of frequency and is also well suited to verify the uniformity of the FO sensor frequency response. As anticipated, the overall uncertainty of the calibration was dependent on frequency and determined to be about ±12% (±1 dB) up to 40 MHz, ±20% (±1.5 dB) from 40 to 60 MHz and ±25% (±2 dB) from 60 to 100 MHz. The outcome of this research indicates that once fully developed and calibrated, the combined acousto-optic system will constitute a universal reference tool in the wide, 100 MHz bandwidth.  相似文献   

17.

Objective and motivation

The goal of this work was to test experimentally that exposing air bubbles or ultrasound contrast agents in water to amplitude modulated wave allows control of inertial cavitation affected volume and hence could limit the undesirable bioeffects.

Methods

Focused transducer operating at the center frequency of 10 MHz and having about 65% fractional bandwidth was excited by 3 μs 8.5 and 11.5 MHz tone-bursts to produce 3 MHz envelope signal. The 3 MHz frequency was selected because it corresponds to the resonance frequency of the microbubbles used in the experiment. Another 5 MHz transducer was used as a receiver to produce B-mode image. Peak negative acoustic pressure was adjusted in the range from 0.5 to 3.5 MPa. The spectrum amplitudes obtained from the imaging of SonoVueTM contrast agent when using the envelope and a separate 3 MHz transducer were compared to determine their cross-section at the - 6 dB level.

Results

The conventional 3 MHz tone-burst excitation resulted in the region of interest (ROI) cross-section of 2.47 mm while amplitude modulated, dual-frequency excitation with difference frequency of 3 MHz produced cross-section equal to 1.2 mm.

Conclusion

These results corroborate our hypothesis that, in addition to the considerably higher penetration depth of dual-frequency excitation due to the lower attenuation at 3 MHz than that at 8.5 and 11.5 MHz, the sample volume of dual-frequency excitation is also smaller than that of linear 3-MHz method for more spatially confined destruction of microbubbles.  相似文献   

18.
Ultrasonic attenuation in fresh and 5% formalin fixed beef skeletal muscle has been measured, as a continuous function of frequency, in the range 1–8 MHz, for muscle fibre orientations both parallel and normal to the direction of propagation. Good agreement was found in all cases between two independent sets of measurements employing transmission and reflection techniques respectively. The data are consistent with a power law dependence of attenuation coefficient on frequency, with an exponent that is not significantly different from unity. For propagation normal to the fibres attenuation values are found as 1.1 ± 0.15 and 1.6 ± 0.15 dB cm?1 MHz?1 for fresh and fixed tissue respectively, the corresponding values for parallel propagation being 2.9 ± 0.23 and 4.1 ± 0.25 dB cm?1 MHz?1.  相似文献   

19.
Liu C  Djuth F  Li X  Chen R  Zhou Q  Shung KK 《Ultrasonics》2012,52(4):497-502
This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 × 9 μm. The width of the kerf among pillars was ∼5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and −6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about −35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers, e.g. 1D and 2D arrays.  相似文献   

20.
To achieve high-gain S-band waveguide amplifiers and promote the practicality of integrated signal amplification devices, bent waveguide structures based on Tm3+ doped germanate glass substrate have been designed. Using simulated-bend method, the optimal radius for the curved structure is offered to be 1.90 cm with a loss coefficient of 0.04 dB/cm, as the substrate size is minimally schemed. For the folded-spiral waveguide, the internal gain at 1482 nm is derived to be 13.01 dB, which is higher than the values of 8.21 and 4.22 dB in the U- and S-bend waveguides, respectively, and nearly three times higher than that of the straight one. Simulation results indicate that the optical path design is attractive in realizing the high gain of Tm3+ doped germanate glass channel waveguides for practical S-band amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号