首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A model updating methodology is proposed for calibration of nonlinear finite element (FE) models simulating the behavior of real-world complex civil structures subjected to seismic excitations. In the proposed methodology, parameters of hysteretic material models assigned to elements (or substructures) of a nonlinear FE model are updated by minimizing an objective function. The objective function used in this study is the misfit between the experimentally identified time-varying modal parameters of the structure and those of the FE model at selected time instances along the response time history. The time-varying modal parameters are estimated using the deterministic–stochastic subspace identification method which is an input–output system identification approach. The performance of the proposed updating method is evaluated through numerical and experimental applications on a large-scale three-story reinforced concrete frame with masonry infills. The test structure was subjected to seismic base excitations of increasing amplitude at a large outdoor shake-table. A nonlinear FE model of the test structure has been calibrated to match the time-varying modal parameters of the test structure identified from measured data during a seismic base excitation. The accuracy of the proposed nonlinear FE model updating procedure is quantified in numerical and experimental applications using different error metrics. The calibrated models predict the exact simulated response very accurately in the numerical application, while the updated models match the measured response reasonably well in the experimental application.  相似文献   

2.
Few experimental and complementary theoretical studies have investigated high-frequency (>20 MHz) nonlinear responses from polymer-shelled ultrasound contrast agents. Three polymer agents with different shell properties were examined for their single-bubble backscatter when excited with a 40 MHz tone burst. Higher-order harmonic responses were observed for the three agents; however, their occurrence was at least partly due to nonlinear propagation. Only one of the agents (1.1 microm mean diameter) showed a subharmonic response for longer excitations (approximately 10-15 cycles) and midlevel pressure excitations ( 2.5 MPa). Theoretical calculations of the backscattered spectrum revealed behavior similar to the experimental results in specific parameter regimes.  相似文献   

3.
The reciprocity theorem is a general statement valid for elastic media, and it has been applied to the solution of elastic wave equations, transducers calibration, time reversal acoustics, etc. However, localized nonlinear scatterers are expected to break reciprocity even though the effect is, in several cases, negligible. Here the dependence of the reciprocity break on the presence of a localized damage and the influence of its relative position has been experimentally investigated. It will be shown that the break of reciprocity, usually considered a disadvantage, can be exploited as an imaging tool for localized cracks detection.  相似文献   

4.
Dental erosion and decay are increasingly prevalent but as yet there is no quantitative monitoring tool. Such a tool would allow earlier diagnosis and treatment and ultimately the prevention of more serious disease and pain. Despite ultrasound having been demonstrated as a method of probing the internal structures of teeth more than 40 years ago, development of a clinical tool has been slow. The aim of the study reported here was to investigate the use of a novel high frequency ultrasound transducer and validate it using a known dental technique.A tooth extracted for clinical reasons was sectioned to provide a sample that contained an enamel and dentine layer such that the enamel-dentine junction (EDJ) was of a varying depth. The sample was then submerged in water and a B-scan recorded using a custom-designed piezocomposite ultrasound transducer with a centre frequency of 35 MHz and a −6 dB bandwidth of 24 MHz.The transducer has an axial resolution of 180 μm and a spatial resolution of 110 μm, a significant advance on previous work using lower frequencies. The depth of the EDJ was measured from the resulting data set and compared to measurements from the sequential grinding and imaging (SGI) method.The B-scan showed that the EDJ was of varying depth. Subsequently, the EDJ measurements were found to have a correlation of 0.89 (p < 0.01) against the SGI measurements. The results indicate that high frequency ultrasound is capable of measuring enamel thickness to an accuracy of within 10% of the total enamel thickness, whereas currently there is no clinical tool available to measure enamel thickness.  相似文献   

5.
The nonlinear optical nonlinearities of a fluorine-containing azoic dye in tetrahydrofuran have been investigated by using Z-scan technique with picosecond and nanosecond lasers. The experimental results reveal that the azoic dye has large optical nonlinearity under the excitations of picosecond and nanosecond 532 nm. At the picosecond 532 nm the solution presents negative nonlinear refraction due to the electronic effect, while the larger nonlinear refraction under nanosecond laser excitation is induced by thermal effect. Moreover, the different nonlinear absorption behavior under picosecond and nanosecond excitations is analyzed.  相似文献   

6.
A reversal 4f coherent imaging system with phase objects is presented to measure nonlinear refraction of the materials. The modified system can increase the sensitivity compared with the conventional nonlinear-imaging technique with phase objects. The sensitivity enhancement of the modified system is about two times greater than the conventional technique within 0 ≤ ΔφNL ≤ 1. CS2 is used to demonstrate the measurement using the reversal 4f coherent imaging system with phase objects.  相似文献   

7.
A number of ultrasound imaging systems employs harmonic imaging to optimize the trade off between resolution and penetration depth and center frequencies as high as 15 MHz are now used in clinical practice. However, currently available measurement tools are not fully adequate to characterize the acoustic output of such nonlinear systems primarily due to the limited knowledge of the frequency responses beyond 20 MHz of the available piezoelectric hydrophone probes. In addition, ultrasound hydrophone probes need to be calibrated to eight times the center frequency of the imaging transducer. Time delay spectrometry (TDS) is capable of providing transduction factor of the probes beyond 20 MHz, however its use is in practice limited to 40 MHz. This paper describes a novel approach termed time gating frequency analysis (TGFA) that provides the transduction factor of the hydrophone probes in the frequency domain and significantly extends the quasi-continuous calibration of the probes up to 60 MHz. The verification of the TGFA data was performed using TDS calibration technique (up to 40 MHz) and a nonlinear calibration method (up to 100 MHz). The nonlinear technique was based on a novel wave propagation model capable of predicting the true pressure-time waveforms at virtually any point in the field. The spatial averaging effects introduced by the finite aperture hydrophones were also accounted for. TGFA calibration results were obtained for different PVDF probes, including needle and membrane designs with nominal diameters from 50 to 500 micro m. The results were compared with discrete calibration data obtained from an independent national laboratory and the overall uncertainty was determined to be +/-1.5 dB in the frequency range 40-60 MHz and less than +/-1 dB below 40 MHz.  相似文献   

8.
Jeong JS  Chang JH  Shung KK 《Ultrasonics》2012,52(6):730-739
In an ultrasound image-guided High Intensity Focused Ultrasound (HIFU) surgery, reflected HIFU waves received by an imaging transducer should be suppressed for real-time simultaneous imaging and therapy. In this paper, we investigate the feasibility of pulse compression scheme combined with notch filtering in order to minimize these HIFU interference signals. A chirp signal modulated by the Dolph-Chebyshev window with 3-9 MHz frequency sweep range is used for B-mode imaging and 4 MHz continuous wave is used for HIFU. The second order infinite impulse response notch filters are employed to suppress reflected HIFU waves whose center frequencies are 4 MHz and 8 MHz. The prototype integrated HIFU/imaging transducer that composed of three rectangular elements with a spherically con-focused aperture was fabricated. The center element has the ability to transmit and receive 6 MHz imaging signals and two outer elements are only used for transmitting 4 MHz continuous HIFU wave. When the chirp signal and 4 MHz HIFU wave are simultaneously transmitted to the target, the reflected chirp signals mixed with 4 MHz and 8 MHz HIFU waves are detected by the imaging transducer. After the application of notch filtering with pulse compression process, HIFU interference waves in this mixed signal are significantly reduced while maintaining original imaging signal. In the single scanline test using a strong reflector, the amplitude of the reflected HIFU wave is reduced to −45 dB. In vitro test, with a sliced porcine muscle shows that the speckle pattern of the restored B-mode image is close to that of the original image. These preliminary results demonstrate the potential for the pulse compression scheme with notch filtering to achieve real-time ultrasound image-guided HIFU surgery.  相似文献   

9.
Metal nanocluster composite glass prepared by 180 keV Cu ions into silica with dose of 1 × 1017 ions/cm2 has been studied. The microstructural properties of the nanoclusters were analysed by optical absorption spectra and transmission electron microscopy (TEM). Third-order nonlinear optical properties of the nanoclusters were measured at 1064 nm and 532 nm excitations using Z-scan technique. The nonlinear refraction index, nonlinear absorption coefficient, and the real and imaginary parts of the third-order nonlinear susceptibility were deduced. The mechanisms responsible for the nonlinear response were discussed. Absolute third-order nonlinear susceptibility χ(3) of this kind of sample was determined to be 2.1 × 10−7 esu at 532 nm and 1.2 × 10−7 esu at 1064 nm, respectively.  相似文献   

10.
A high-resolution spectroscopy technique is proposed with an optical phase modulator combined with an interleaved optical frequency comb. The optical phase modulator and a frequency-locked laser light guarantee a spectral resolution less than 1 MHz on an absolute frequency axis. A wide measurement frequency range was realized using a 25 GHz optical frequency comb lying over a 4 THz frequency region. An extraction of single tooth intensity from the comb was realized by a heterodyne technique with a frequency-tunable laser used as a local oscillator. Also, the 25 GHz optical frequency comb was interleaved to generate four 100-GHz combs for removing the crosstalk from the 25 GHz neighboring sidebands in the teeth. This proposed spectroscopy technique was experimentally demonstrated with a resonator of less than 1 MHz linewidth and a H13C14N gas cell. Thus, a measurement frequency range higher than 4 THz (1530 nm-1560 nm) was confirmed with an effective spectral resolution 100 kHz order. In addition, the characteristics of the proposed system were compared with those of the previous system with a single-sideband (SSB) optical modulator.  相似文献   

11.
This paper presents a nonlinear imaging method for the detection of the nonlinear signature due to impact damage in complex anisotropic solids with diffuse field conditions. The proposed technique, based on a combination of an inverse filtering approach with phase symmetry analysis and frequency modulated excitation signals, is applied to a number of waveforms containing the nonlinear impulse responses of the medium. Phase symmetry analysis was used to characterize the third order nonlinearity of the structure by exploiting its invariant properties with the phase angle of the input waveforms. Then, a "virtual" reciprocal time reversal imaging process, using only one broadcasting transducer and one receiving transducer, was used to insonify the defect taking advantage of multiple linear scattering as mode conversion and boundary reflections. The robustness of this technique was experimentally demonstrated on a damaged sandwich panel, and the nonlinear source, induced by low-velocity impact loading, was retrieved with a high level of accuracy. Its minimal processing requirements make this method a valid alternative to the traditional nonlinear elastic wave spectroscopy techniques for materials showing either classical or non-classical nonlinear behavior.  相似文献   

12.
张海燕  曹亚萍  孙修立  陈先华  于建波 《中国物理 B》2010,19(11):115201-115201
This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metal-lic plate structure.The temporal focusing effect of the time reversal Lamb waves is investigated theoretically.It demonstrates that the focusing effect is related to the frequency dependency of the time reversal operation.Numerical simulations are conducted to study the time reversal behaviour of Lamb wave modes under broadband and narrowband excitations.The results show that the reconstructed time reversed wave exhibits close similarity to the reversed nar-rowband tone burst signal validating the theoretical model.To enhance the similarity,the cycle number of the excited signal should be increased.Experiments combining finite element model are then conducted to study the imaging method in the presence of damage like hole in the plate structure.In this work,the time reversal technique is used for the recompression of Lamb wave signals.Damage imaging results with time reversal using broadband and narrowband excitations are compared to those without time reversal.It suggests that the narrowband excitation combined time reversal can locate and determine the size of structural damage more precisely,but the cycle number of the excited signal should be chosen reasonably.  相似文献   

13.
We experimentally analyze the self-starting operation of a figure-eight mode-locked fiber laser. The design is based on a power-balanced nonlinear optical loop mirror (NOLM) with highly twisted low-birefringence fiber and a quarter-wave (QW) retarder in the loop. The NOLM operates by nonlinear polarization rotation. Self-starting mode-locking requires a careful adjustment of the NOLM low-power transmission, which is easily realized with our setup by adjusting the angle of the QW retarder. The laser is capable of generating ∼20 ps pulses at the fundamental repetition frequency of 0.78 MHz.  相似文献   

14.
Shen CC  Su SY  Cheng CH  Yeh CK 《Ultrasonics》2012,52(1):25-32

Objective

The goal of this work is to examine the effects of pulse-inversion (PI) technique in combination with dual-frequency (DF) excitation method to separate the high-order nonlinear responses from microbubble contrast agents for improvement of image contrast. DF excitation method has been previously developed to induce the low-frequency ultrasound nonlinear responses from bubbles by using the composition of two high-frequency sinusoids (f1 and f2).

Motivation

Although the simple filtering was conventionally utilized to provide signal separation, the PI approach is better in the sense that it minimizes the mutual interferences among these high-order nonlinear responses in the presence of spectral overlap. The novelty of the work is that, in addition to the common PI summation, the PI subtraction was also applied in DF excitation method.

Methods

DF excitation pulses having an envelope frequency of 3 MHz (i.e., f1 = 8.5 MHz and f2 = 11.5 MHz) with pulse lengths of 3-10 μs and the pressure amplitudes from 0.5 to 1.5 MPa were used to interrogate the nonlinear responses of SonoVue™ microbubbles in the phantom experiments. The high-order nonlinear responses in the DF excitation were extracted for contrast imaging using PI summation for even-order nonlinear components or PI subtraction for odd-order nonlinear ones.

Results

Our results indicated that, as compared to the conventional filtering technique, the PI processing effectively increases the contrast-to-tissue ratio (CTR) of the third-order nonlinear response at 5.5 MHz and the fourth-order nonlinear response at 6 MHz by 2-5 dB. For these high-order nonlinear components, the CTR increase varies with the transmission pressures from 0.5 to 1.5 MPa due to the microbubbles’ displacement induced by the radiation force of DF excitation.

Conclusions

For DF excitation technique, the PI processing can help to extract either the odd-order or the even-order nonlinear components for higher CTR estimates.  相似文献   

15.
The effect of electronic tuning of acoustic resonances in an acousto-optic mode locker is studied theoretically and experimentally. The tuning is implemented by means of changing a matching inductance connected to the transducer in parallel. Experimental investigations are carried out with a mode locker made of a fused quartz with a lithium niobate transducer. Varying magnitude of the inductor from 0.025 to 0.25 mH has made it possible to retune the acoustic resonance frequency by 0.19 MHz, i.e. wider than the acoustic resonance half-width.  相似文献   

16.
Current medical diagnostic echo systems are mostly using harmonic imaging. This means that a fundamental frequency (e.g., 2 MHz) is transmitted and the reflected and scattered higher harmonics (e.g., 4 and 6 MHz), produced by nonlinear propagation, are recorded. The signal level of these harmonics is usually low and a well-defined transfer function of the receiving transducer is required. Studying the acoustic response of a single contrast bubble, which has an amplitude in the order of a few Pascal, is another area where an optimal receive transfer function is important.

We have developed three methods to determine the absolute transfer function of a transducer. The first is based on a well-defined wave generated by a calibrated source in the far field. The receiving transducer receives the calibrated wave and from this the transfer functions can be calculated. The second and third methods are based on the reciprocity of the transducer. The second utilizes a calibrated hydrophone to measure the transmitted field. In the third method, a pulse is transmitted by the transducer, which impinges on a reflector and is received again by the same transducer. In both methods, the response combined with the transducer impedance and beam profiles enables the calculation of the transfer function.

The proposed methods are useful to select the optimal piezoelectric material (PZT, single crystal) for transducers used in reception only, such as in certain 3D scanning designs and superharmonic imaging, and for selected experiments like single bubble behavior.

We tested and compared these methods on two unfocused single element transducers, one commercially available (radius 6.35 mm, centre frequency 2.25 MHz) the other custom built (radius 0.75 mm, centre frequency 4.3 MHz). The methods were accurate to within 15%.  相似文献   


17.
We investigated the use and implementation of a nonlinear methodology for establishing which changes in neurophysiological signals cause changes in the blood oxygenation level-dependent (BOLD) contrast measured in functional magnetic resonance imaging. Unlike previous analytical approaches, which used linear correlation to establish covariations between neural activity and BOLD, we propose a directed information-theoretic measure, the transfer entropy, which can elucidate even highly nonlinear causal relationships between neural activity and BOLD signal. In this study we investigated the practicality of such an analysis given the limited data samples that can be collected experimentally due to the low temporal resolution of BOLD signals. We implemented several algorithms for the estimation of transfer entropy and we tested their effectiveness using simulated local field potentials (LFPs) and BOLD data constructed to match the main statistical properties of real LFP and BOLD signals measured simultaneously in monkey primary visual cortex. We found that using the advanced methods of entropy estimation implemented and described here, a transfer entropy analysis of neurovascular coupling based on experimentally attainable data sets is feasible.  相似文献   

18.
S. Mitatha 《Optik》2010,121(14):1313-1316
We firstly propose a new system for simultaneous fast and slow light generation using a soliton pulse propagating within the nonlinear micro-ring resonators. The nonlinear Kerr effect induces the spreading frequency bands within the micro-ring device, where the chaotic filtering characteristics can be employed using the appropriate micro-ring parameters. Results obtained have shown that the wide spreading of frequency bands can be generated and selected to form the optical wireless communication links. In this work, the selected down-link and up-link frequency bands are 500 MHz and 2 GHz, respectively. The proposed system can be implemented within the mobile telephone hand set, where the two different frequency carriers within the same frequency bands can be selected to form the up-down-link converters, which means that the frequency converter can be performed within a single system.  相似文献   

19.
20.
The orientation-dependent dielectric properties of barium stannate titanate (Ba(Sn0.15Ti0.85)O3, BTS) thin films grown on (1 0 0) LaAlO3 single-crystal substrates through sol-gel process were investigated. The nonlinear dielectric properties of the BTS films were measured using an inter-digital capacitor (IDC). The results show that the in-plane dielectric properties of BTS films exhibited a strong sensitivity to orientation. The upward shift of Curie temperature (Tc) of the highly (1 0 0)-oriented BTS thin films is believed to be attributing to a tensile stress along the in-plane direction inside the film. A high tunability of 47.03% was obtained for the highly (1 0 0)-oriented BTS films, which is about three times larger than that of the BTS films with random orientation, measured at a frequency of 1 MHz and an applied electric field of 80 kV/cm. This work clearly reveals the highly promising potential of BTS films for application in tunable microwave devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号