首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first silicon analogues of carbonic (carboxylic) esters, the silanoic thio‐, seleno‐, and tellurosilylesters 3 (Si?S), 4 (Si?Se), and 5 (Si?Te), were prepared and isolated in crystalline form in high yield. These thermally robust compounds are easily accessible by direct reaction of the stable siloxysilylene L(Si:)OSi(H)L′ 2 (L=HC(CMe)2[N(aryl)2], L′=CH[(C?CH2)‐CMe][N(aryl)]2; aryl=2,6‐iPr2C6H3) with the respective elemental chalcogen. The novel compounds were fully characterized by methods including multinuclear NMR spectroscopy and single‐crystal X‐ray diffraction analysis. Owing to intramolecular N→Si donor–acceptor support of the Si?X moieties (X=S, Se, Te), these compounds have a classical valence‐bond N+–Si–X? resonance betaine structure. At the same time, they also display a relatively strong nonclassical Si?X π‐bonding interaction between the chalcogen lone‐pair electrons (nπ donor orbitals) and two antibonding Si? N orbitals (σ*π acceptor orbitals mainly located at silicon), which was shown by IR and UV/Vis spectroscopy. Accordingly, the Si?X bonds in the chalcogenoesters are 7.4 ( 3 ), 6.7 ( 4 ), and 6.9 % ( 5 ) shorter than the corresponding Si? X single bonds and, thus, only a little longer than those in electronically less disturbed Si?X systems (“heavier” ketones).  相似文献   

2.
This work describes the synthesis and full characterization of a series of GaCl3 and B(C6F5)3 adducts of diazenes R1?N?N?R2 (R1=R2=Me3Si, Ph; R1=Me3Si, R2=Ph). Trans‐Ph?N?N?Ph forms a stable adduct with GaCl3, whereas no adduct, but instead a frustrated Lewis acid–base pair is formed with B(C6F5)3. The cis‐Ph?N?N?Ph ? B(C6F5)3 adduct could only be isolated when UV light was used, which triggers the isomerization from trans‐ to cis‐Ph?N?N?Ph, which provides more space for the bulky borane. Treatment of trans‐Ph?N?N?SiMe3 with GaCl3 led to the expected trans‐Ph?N?N?SiMe3 ? GaCl3 adduct but the reaction with B(C6F5)3 triggered a 1,2‐Me3Si shift, which resulted in the formation of a highly labile iso‐diazene, Me3Si(Ph)N?N; stabilized as a B(C6F5)3 adduct. Trans‐Me3Si?N?N?SiMe3 forms a labile cis‐Me3Si?N?N?SiMe3 ? B(C6F5)3 adduct, which isomerizes to give the transient iso‐diazene species (Me3Si)2N?N ? B(C6F5)3 upon heating. Both iso‐diazene species insert easily into one B?C bond of B(C6F5)3 to afford hydrazinoboranes. All new compounds were fully characterized by means of X‐ray crystallography, vibrational spectroscopy, CHN analysis, and NMR spectroscopy. All compounds were further investigated by DFT and the bonding situation was assessed by natural bond orbital (NBO) analysis.  相似文献   

3.
Conveniently available transition metal hexamethyldisilazanes (M-HMDS) are described as novel surface reacting agents in ?Si? O? M type surface compound formation on silicagel. Secondary reaction products ?Si? O? SiMe3 and ?Si? N(SiMe3)2 confer “silanized” (hydrophobic) environments which can be removed at 300–400°C. Reactivity of M? N linkages with surface silanols and strained siloxanes can be manipulated by coordinating ligands L (also as solvents) in the molecule. Three legged vanadium(III) surface compounds were obtained directly by thermal activation of V[N(SiMe3)2]3 on SiO2 in neutral or reducing atmospheres. Detailed course of the reaction were monitored by ESCA and Reflectance Spectroscopy. Impregnation from benzene (0.40–0.45 wt. % V) and subsequent heating to 400–800°C (for 1 hr) gave optimized products. The optimized (?Si? O)3V from V(HMDS)3 was found to have identical spectral, chemical, and catalytical properties as the oxidation/reduction products from NH4VO3 etc. from aq. impregnations including chemiluminescence with O2 at 20°C. This is the first reported example of such remarkable surface product correspondence by different mechanistic pathways and its utility in structural elucidation is emphasized. Importance of chemiluminescence as most sensitive indicator of identical surface states is discussed as well as attempts to produce “naked” two legged VII/SiO2 and VIII/SiO2.  相似文献   

4.
Six bis(silyl)acetylenes (XMe2Si? C?C? SiMe2X) with the following varied silicon substituents X were prepared: 1 (Me, Me); 2 (H, H); 3 (C1, H); 4 (CI, CI); 5 (MeO, H); 6 (MeO, MeO). While 1 and 2 may be prepared by the reaction of dilithio- or bis(bromomagnesium)-acetylide with the appropriate chlorosilane, similar reactions designed to give 3–6 yielded oligomers, XMe2Si? (? C?C? SiMe2)n? X, 7, X=CI, MeO, as the major products, indicating that the acetylenic functionality on silicon activates the chlorosilane towards nucleophilic substitution. Compounds 3 and 4 were prepared by free radical chlorination of 2. Methanolysis of 3 and 4 gave quantitative yields of 5 and 6 respectively. Compounds 1–6 undergo a Diels–Alder reaction with α-pyrone to produce, after loss of carbon dioxide, bis(silyl)-substituted benzene derivatives. The order of reactivity has been determined to be: 4=6>3=5>1>2, indicating that chloro or alkoxy substituents favor the cycloaddition with 2- pyrone. The adducts formed by compounds 3–6 undergo an unusually facile hydrolysis or elimination to give 1,1,3,3-tetramethyl-1,3-disila-2-oxaindane.  相似文献   

5.
The syntheses and reactivity of the two N‐heterocyclic carbene (NHC)→ silylene complexes 2 and 4 have been investigated. The latter are easily accessible by reaction of the zwitterionic, N‐heterocyclic silylene LSi: 1 [L=Ar‐N‐C(=CH2)CH?C(Me)‐N‐Ar, Ar=2,6‐iPr2C6H3] with 1,3,4,5‐tetramethylimidazol‐2‐ylidene and 1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene, respectively. While compound 2 undergoes facile rearrangement above ?20 °C to give the unsymmetrical N‐heterocyclic silylcarbene 3 , the derivative 4 remains unchanged even after boiling in benzene. The remarkable reactivity of 3 and 4 towards cyclohexylisocyanide has been examined which leads in a unique series of C? H, Si? H, and C? N bond activations to the new triaminosilanes 5 and 6 , respectively. The novel compounds 3 , 4 , 5 , and 6 were fully characterized by 1H, 13C, and 29Si NMR spectroscopy, EI‐MS, elemental analysis, and single‐crystal X‐ray diffraction.  相似文献   

6.
The New P -Phosphanylphosphaalkene 1-Bis(trimethylsilyl)methylidene-2,2-diisopropyldiphosphane: First Reactions at its P=C and P–P Bonds (Me3Si)2C=PCl ( 1 ) reacts with the trichlorosilylphosphanes RR′PSiCl3 (R and R′ = t-Bu or i-Pr) providing the new P-dialkylphosphanylphosphaalkenes (Me3Si)2C=P–P-i-Pr2 ( 2 ) and (Me3Si)2C=P–P(t-Bu)(i-Pr) ( 3 ) as well as the known (Me3Si)2C=P–P-t-Bu2 ( 4 ). The P=C double bond of 2 can be protected reversibly by a [2 + 4]-cycloaddition with cyclopentadiene resulting in the formation of a P-phosphanyl-phosphanorbornene derivative 5 . The [2 + 4]-cycloaddition of 2 with 2,3-dimethylbutadiene provides the cyclic diphosphane 6 . Reactions of 2 with sulfur and selenium were followed by 31P and 77Se nmr: Chalcogen insertion into the P–P bond leads to the products (Me3Si)2C=P–X–P-i-Pr2 9 a (X = S) and  9 b (X = Se). Subsequent σ3λ3 → σ4λ5 oxidation steps of 9 a with S and of 9 b with Se lead to compounds (Me3Si)2C=P–X–P(=X)-i-Pr2 10 a (X = S) and 10 b (X = Se), which contain phosphinic acid functions with the phosphaalkene moieties attached to S or Se. 10 a and 10 b were not isolated in a pure state. However, trapping 10 b from an enriched solution by [2 + 4]-cycloaddition with cyclopentadiene allowed the isolation of the P-diseleno-phosphinato-phosphanorbornene 12 . The constitution of new compounds 2 , 3 , 5 , 6 and 12 was confirmed by elemental analyses, nmr and mass spectra. The structures of cycloadducts 5 and 6 were determined by X-ray diffraction analysis.  相似文献   

7.
Megawatt ArF laser photolysis of gaseous methyldisilazanes [(CH3)nH3?nSi]2NH (n = 2, 3) in excess of Ar yields hydrocarbons (major volatile products), methylsilanes (minor volatile products) and allows chemical vapour deposition of solid amorphous Si/C/O/N/H powder containing Si? X (X? C, H, O, N) bonds. The incorporation of O is due to a high reactivity of the primarily formed products towards air moisture. The resulting solid materials possess nanometer‐sized texture and high specific area, contain Si‐centered radicals and anneal under argon to silicon oxycarbonitride, whose structure is described as a network of O‐ and N‐interconnected Si and C atoms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The synthesis of an N‐heterocyclic silylene‐stabilized digermanium(0) complex is described. The reaction of the amidinate‐stabilized silicon(II) amide [LSiN(SiMe3)2] ( 1 ; L=PhC(NtBu)2) with GeCl2?dioxane in toluene afforded the SiII–GeII adduct [L{(Me3Si)2N}Si→GeCl2] ( 2 ). Reaction of the adduct with two equivalents of KC8 in toluene at room temperature afforded the N‐heterocyclic carbene silylene‐stabilized digermanium(0) complex [L{(Me3Si)2N}Si→ Ge?Ge←Si{N(SiMe3)2}L] ( 3 ). X‐ray crystallography and theoretical studies show conclusively that the N‐heterocyclic silylenes stabilize the singlet digermanium(0) moiety by a weak synergic donor–acceptor interaction.  相似文献   

9.
Ruthenium(II) Phthalocyaninates(2–): Synthesis and Properties of (Acido)(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) (nBu4N)[Ru(OH)2Pc2?] is reduced in acetone with carbonmonoxid to blue-violet [Ru(H2O)(CO)Pc2?], which yields in tetrahydrofurane with excess (nBu4N)X acido(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) isolated as red-violet, diamagnetic (nBu4N) complex salt. The UV-Vis spectra are dominated by the typical π-π* transitions of the Pc2? ligand at approximately 15100 (B), 28300 (Q1) und 33500 cm?1 (Q2), only fairly dependent of the axial ligands. v(C? O) is observed at 1927 (X = I), 1930 (Cl, Br), 1936 (N3, NCO) 1948 cm?1 (NCS), v(C? N) at 2208 cm?1 (NCO), 2093 cm?1 (NCS) and v(N? N) at 2030 cm?1 only in the MIR spectrum. v(Ru? C) coincides in the FIR spectrum with a deformation vibration of the Pc ligand, but is detected in the resonance Raman(RR) spectrum at 516 (X = Cl), 512 (Br), 510 (N3), 504 (I), 499 (NCO), 498 cm?1 (NCS). v(Ru? X) is observed in the FIR spectrum at 257 (X = Cl), 191 (Br), 166 (I), 349 (N3), 336 (NCO) and 224 cm?1 (NCS). Only v(Ru? I) is RR-enhanced.  相似文献   

10.
Reaction of bromoacylsilane 1 (pink solution) with tBu2MeSiLi (3.5 equiv) in a 4:1 hexane:THF solvent mixture at ?78 °C to room temperature yields the solvent separated ion pair (SSIP) of silenyl lithium E‐[(tBuMe2Si)(tBu2MeSi)C=Si(SiMetBu2)]? [Li?4THF]+ 2 a (green–blue solution). Removal of the solvent and addition of benzene converts 2 a into the corresponding contact ion pair (CIP) 2 b (violet–red solution) with two THF molecules bonded to the lithium atom. The 2 a ? 2 b interconversion is reversible upon THF? benzene solvent change. Both 2 a and 2 b were characterized by X‐ray crystallography, NMR and UV/Vis spectroscopy, and theoretical calculations. The degree of dissociation of the Si?Li bond has a large effect on the visible spectrum (and thus color) and on the silenylic 29Si NMR chemical shift, but a small effect on the molecular structure. This is the first report of the X‐ray molecular structure of both the SSIP and the CIP of any R2E=E′RM species (E=C, Si; E′=C, Si; M=metal).  相似文献   

11.
Metallacyclic complex [(Me2N)3Ta(η2‐CH2SiMe2NSiMe3)] ( 3 ) undergoes C?H activation in its reaction with H3SiPh to afford a Ta/μ‐alkylidene/hydride complex, [(Me2N)2{(Me3Si)2N}Ta(μ‐H)2(μ‐C‐η2‐CHSiMe2NSiMe3)Ta(NMe2)2] ( 4 ). Deuterium‐labeling studies with [D3]SiPh show H–D exchange between the Ta?D ?Ta unit and all methyl groups in [(Me2N)2{(Me3Si)2N}Ta(μ‐D)2(μ‐C‐η2‐CHSiMe2NSiMe3)Ta(NMe2)2] ([D2]‐ 4 ) to give the partially deuterated complex [Dn]‐ 4 . In addition, 4 undergoes β‐H abstraction between a hydride and an NMe2 ligand and forms a new complex [(Me2N){(Me3Si)2N}Ta(μ‐H)(μ‐N‐η2‐C,N‐CH2NMe)(μ‐C‐η2‐C,N‐CHSiMe2NSiMe3)Ta(NMe2)2] ( 5 ) with a cyclometalated, η2‐imine ligand. These results indicate that there are two simultaneous processes in [Dn]‐ 4 : 1) H–D exchange through σ‐bond metathesis, and 2) H?D elimination through β‐H abstraction (to give [Dn]‐ 5 ). Both 4 and 5 have been characterized by single‐crystal X‐ray diffraction studies.  相似文献   

12.
The oxonitridoalumosilicates (so‐called sialons) MLn[Si4?xAlxOxN7?x] with M = Eu, Sr, Ba and Ln =Ho, Er, Tm, Yb were obtained by the reaction of the respective lanthanoid metal, the alkaline earth carbonates or europium carbonate, resp., AlN, “Si(NH)2” and MCl2 as a flux in a radiofrequency furnace at temperatures around 2100 °C. The compounds MLn[Si4?xAlxOxN7?x] are relevant for the investigation of substitutional effects on the materials properties due to their ability of tolerating a comparatively large phase width up to x ≈ 2.0(5). The crystal structures of the twelve compounds were refined from X‐ray single crystal data and X‐ray powder data and are found to be isotypic to the MYb[Si4N7] structure type. The compounds crystallize in space group P63mc (no. 186, hexagonal) and are made up of chains of so‐called starlike units [N[4](SiN3)4] or [N[4]((Si,Al)(O,N)3)4], respectively. These units are formed by four (Si,Al)(N/O)4 tetrahedra sharing a common central nitrogen atom. The structure refinement was performed utilizing an O/N‐distribution model according to Paulings rules, i.e. nitrogen was positioned on the four‐fold bridging site and nitrogen and oxygen were distributed equally on both of the two‐fold bridging sites, resulting in charge neutrality of the compound. The Si and Al atoms were distributed equally on their two crystallographic sites, referring to their elemental proportion in the compound, due to being poorly distinguishable by X‐ray methods. The chemical compositions of the compounds were derived from electron probe micro analyses (EPMA).  相似文献   

13.
29Si, 14N 13C and 1H NMR data are presented for a series of homologous (methylethoxysilyl)alkylamines of the type (CH3)3?n(C2H5O)nSi(CH2)mNH2(n=o to 3; m = 1 to 4). The measured 13C and 1H chemical shifts correlate with the total net charges QA on the corressponding atoms, estimated by the Del Re method. 14N and 29Si chemical shifts which do not show simple linear relationships to the charges are found to correlate with the relative basicities of the compounds. The influence of the remote substituent (? NH2 and others) on the 29Si chemical shifts is shown to depend on the number and nature of substituents directly on the silicon atom. Argyments for d-orbital participation in the Si? O bounds are given. The chemical shifts of 29Si, 14N and 13C nuclei are not consistent with the fromation of intramolecular ‘long bonds’ between the solicon and nitrogen atoms in aliphatic silymethylamines.  相似文献   

14.
In this study, we theoretically investigated the mechanism underlying the high‐valent mono‐oxo‐rhenium(V) hydride Re(O)HCl2(PPh3)2 ( 1 ) catalyzed hydrosilylation of C?N functionalities. Our results suggest that an ionic SN2‐Si outer‐sphere pathway involving the heterolytic cleavage of the Si?H bond competes with the hydride pathway involving the C?N bond inserted into the Re?H bond for the rhenium hydride ( 1 ) catalyzed hydrosilylation of the less steric C?N functionalities (phenylmethanimine, PhCH=NH, and N‐phenylbenzylideneimine, PhCH=NPh). The rate‐determining free‐energy barriers for the ionic outer‐sphere pathway are calculated to be ~28.1 and 27.6 kcal mol?1, respectively. These values are slightly more favorable than those obtained for the hydride pathway (by ~1–3 kcal mol?1), whereas for the large steric C?N functionality of N,1,1‐tri(phenyl)methanimine (PhCPh=NPh), the ionic outer‐sphere pathway (33.1 kcal mol?1) is more favorable than the hydride pathway by as much as 11.5 kcal mol?1. Along the ionic outer‐sphere pathway, neither the multiply bonded oxo ligand nor the inherent hydride moiety participate in the activation of the Si?H bond.  相似文献   

15.
A straightforward preparation has been found for bis(dichlorosilyl)methylamine, (SiHCl2)2NMe ( 1 ), involving reaction between H2NMe and an excess of SiHCl3, dissolved either in pentane or THF at 253 K. 1 and a side‐product, 1,3,5‐trichloro‐2,4,6‐trimethylcyclotrisilazane, (–SiHCl–NMe–)3 ( 2 ), were identified by elemental analysis, mass spectrometry and 1H‐NMR‐spectroscopy. Some physical, NMR‐ and IR spectroscopical properties of 1 were determined. The molecular and crystal structure of 1 was investigated by single crystal X‐ray diffraction. Selected structural parameters: r(Si–N) 169.7(5), r(Si–Cl) 203.1(2)–204.4(2), r(C–N) 150.0(8) pm; a(SiNSi) 123.6(3), a(SiNC) 118.3(4)/118.0(4)°. Ab initio force field data and infrared intensities were calculated for four conformers of 1 . Comparison of the observed and calculated IR spectra favours the two structures found ab initio provided that their actual abundancies are different from those calculated.  相似文献   

16.
The stability of noble gas (Ng)‐bound SiH3+ clusters is explored by ab initio computations. Owing to a high positive charge (+1.53 e?), the Si center of SiH3+ can bind two Ng atoms. However, the Si?Ng dissociation energy for the first Ng atom is considerably larger than that for the second one. As we go down group 18, the dissociation energy gradually increases, and the largest value is observed for the case of Rn. For NgSiH3+ clusters, the Ar–Rn dissociation processes are endergonic at room temperature. For He and Ne, a much lower temperature is required for it to be viable. The formation of Ng2SiH3+ clusters is also feasible, particularly for the heavier members and at low temperature. To shed light on the nature of Si?Ng bonding, natural population analysis, Wiberg bond indices computations, electron‐density analysis, and energy‐decomposition analysis were performed. Electron transfer from the Ng centers to the electropositive Si center occurs only to a small extent for the lighter Ng atoms and to a somewhat greater extent for the heavier analogues. The Si?Xe/Rn bonds can be termed covalent bonds, whereas the Si?He/Ne bonds are noncovalent. The Si?Ar/Kr bonds possess some degree of covalent character, as they are borderline cases. Contributions from polarization and charge transfer and exchange are key terms in forming Si?Ng bonds. We also studied the effect of substituting the H atoms of SiH3+ by halide groups (?X) on the Ng binding ability. SiF3+ showed enhanced Ng binding ability, whereas SiCl3+ and SiBr3+ showed a lower ability to bind Ng than SiH3+. A compromise originates from the dual play of the inductive effect of the ?X groups and X→Si π backbonding (pz–pz interaction).  相似文献   

17.
N‐(trialkoxysilylalkyl) derivatives of 1,2,3,4‐tetrahydroquinoline, 1,2,3,4‐tetrahydroisoquinoline and 4,4‐dimethyl‐4‐sila‐1,2,3,4‐tetrahydroisoquinoline were prepared and characterized by elemental analysis, 1H, 13C and 29Si NMR spectroscopy. In vivo psychotropic properties and in vitro cytotoxic effects of 3‐[N‐(1,2,3,4‐tetrahydroisoquinolyl)]propyltriethoxysilane methiodide and 3‐[N‐(1,2,3,4‐tetrahydroisoquinolyl)]propylsilatrane are reported. Comparative study of 29Si shifts in newly synthesized compounds suggested donor–acceptor interaction between nitrogen and silicon atom, which increased electron density at Si nuclei, revealing a stronger increment of N → Si transannular bond in comparison with N → Si α‐effect. The molecular structure of 3‐[N‐(1,2,3,4‐tetrahydroisoquinolyl)]propylsilatrane features a penta‐coordinate silicon atom having CSiO3 pattern and Si…N intramolecular interaction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The 29Si-NMR chemical shifts δ(29Si) of (CH3)4?nSiXn compounds and some 13C-NMR chemical shifts δ(13C) of analogous carbon compounds are discussed by means of relative paramagnetic screening constants σ*, calculated by a simplified model. In this model only the Si(3P)- and C(2P)-orbitals are considered; for the calculations, the electronegativities of Si, C and the X-substituents and a single empirical parameter are necessary. The calculated values of σ* are in good agreement with the change of the chemical shifts which are observed for the (CH3)4?nMXn compounds with different X and n. These results clearly show that δ(29Si) and δ(13C) depend primarily on the σ-charge of the Si- and C-atom, and that (P? d)π-interactions on the Si-atom are of minor importance.  相似文献   

19.
Acyl- and Alkylidenephosphines. XXIV. (N,N-Dimethylthiocarbamoyl)trimethylsilyl-phosphines and 1.2-Di(tert-butyl)-3-dimethylamino-1-thio-4-trimethylsilylsulfano-1λ5, 2λ3-diphosphet-3-ene In contrast to bis(trimethylsilyl)phosphines R? P[? Si(CH3)3]2 1 {R ? H3C a ; (H3C)3C b ; H5H6 c ; H11C9 d ; (H3C)3Si e }, the more nucleophilic lithium trimethylsilylphosphides 4 react with N,N-dimethylthiocarbamoyl chloride already at ?78°C to give (N,N-dimethylthiocarbamoyl)trimethylsilylphosphines 2 . Working up the reaction, a dismutation of the mesityl derivative 2d is observed, whereas the tert-butyl compound 2b dissolved in toluene, eliminates dimethyl(trimethylsilyl)amine to form 1,2-di(tert-butyl)-3-dimethylamino-1-thio-4-trimethylsilyl-sulfano- 1λ5, 2λ3-diphosphet-3-ene 6b , nearly quantitatively within several days at +20°C.  相似文献   

20.
Comparative semi-empirical PM3 and ab initio STO 3-21G calculations on bornanesultam-derived dienophiles containing the structural moiety SO2? N? C(O)? X(α) = Y(β) suggest that, among the conformers of low energy, the thermodynamically less stable SO2/C(O)-syn,C(O)/X=Y-s-cis conformation is also reactive in terms of LUMO level and atomic coefficients. Furthermore, the X(α), Y(β) LUMO atomic coefficients are nonequivalent with respect to both X(α)-re and X(α)-si faces, and thus have, depending on the conformation, a matching or mismatching stereoelectronic influence with the co-operative steric effect. This dissymmetry is believed to result from the generalized anemone effect of the N lone pair, itself anomerically stabilized and directed, in the absence of crucial steric interactions, by the pseudo-axial anti-periplanar S?O bond. Five N-acyl-substituted bornanesultams arc discussed ((–)- 1a : N-acryloyl, X?CH, Y?CH2; (–)- 1b ; N-crotonoyl, X?CH, Y?CHMe; (–)- 1c : N-N′-fumaroyl, X?CH, Y?CH(C(O)-bornanesultam); 2a : N-glyoxyloyl, X?CH, Y?O; 2b : N-acylnitroso, X?N, Y?O). In this context, differences with toluenesultams 3 are pointed out. A previous report on N-(acylnitroso)-bornanesultam 2b is revisited, and the diastereoselectivity observed is shown to result from thermodynamic control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号