首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify the nature of the propagating species in cationic polymerization of styrene catalyzed by acetyl perchlorate, the molecular weight distribution of the polymer was investigated under various conditions. The molecular weight distribution curve for the polymer obtained in methylene chloride at 0°C showed a double peak phenomenon. This suggests that two or more kinds of propagating species participate simultaneously in the propagation reaction. The weight fraction W(H) of the polymer corresponding to the higher molecular weight peak increased with increasing polarity of the solvent. W(H) decreased when the concentration of the ionic species was increased either by an increase of the catalyst concentration or by the addition of the common salt such as tetra-n-butylammonium perchlorate. On the other hand, the position of the peak in the molecular weight distribution curve was independent of polymerization conditions. It was concluded that the higher molecular weight part of the polymer was produced under conditions for conductive to dissociation of the propagating species and the less dissociated propagating species was responsible for the lower molecular weight part of the polymer.  相似文献   

2.
To investigate the nature of the propagating species in cationic polymerization of para-substituted styrenes, p-chlorostyrene (pCIS), p-methylstyrene (pMS), and p-methoxystyrene (pMOS), were polymerized with acetyl perchlorate or iodine in various solvents at 0°C, and the molecular weight distribution (MWD) of the polymers was measured by means of gel-permeation chromatography. When ClO4? was a counterion, poly(pCIS) having a bimodal MWD was produced, while polymers of pMOS and pMS possessed a unimodal MWD, regardless of the solvent polarity. When more nucleophilic I? (or I3?) was a counterion, however, polymers having a bimodal MWD were produced from pMOS and pMS. These results showed that either dissociated or nondissociated propagating species existed in the cationic polymerization of styrene derivatives with acetyl perchlorate or iodine, and that the type of MWD was strongly dependent on the stability of the growing cation and the nucleophilicity of the counterion.  相似文献   

3.
Abstract

The cationic polymerization of β-phenylvinyl alkyl ethers (alkyl: methyl, ethyl, n-propyl, and n-butyl) was examined in toluene and in methylene chloride with boron fluoride etherate and with stannic chloride at ?78°C. Despite the fact that these monomers have bulky substituents on the α –and β-carbons, they could be homopoly-merized easily even in nonpolar sovent at ?78°C. The general features of β-phenylvinyl alkyl ethers in homopolymerization and co-polymerization with n-butyl vinyl ether suggested that β-phenylvinyl alkyl ethers behaved as derivatives of vinyl ethers, not as derivatives of styrenes. The polymerization products were white powders having a high softening point.  相似文献   

4.
Abstract

The cationic graft polymerization of vinyl monomers onto a carbon whisker, vapor-grown carbon fiber, initiated by acylium perchlorate groups introduced onto the surface, was investigated. The introduction of acylium perchlorate groups onto a carbon whisker was achieved by the treatment of a carbon whisker having acyl chloride groups, which were introduced by the reaction of surface carboxyl groups with thionyl chloride, with silver perchlorate in nitrobenzene. It was found that the cationic polymerization of vinyl monomers, such as styrene, indene, N-vinyl-2-pyrrolidone, and n-butyl vinyl ether, is initiated by acylium perchlorate groups on a carbon whisker. In the polymerization, the corresponding vinyl polymers were grafted onto a carbon-whisker surface based on the propagation of polymer from the surface: the percentage of grafting of polystyrene and polyindene reached 42.5 and 100.3%, respectively. The percentage of polystyrene grafting decreased with increasing polymerization temperature because of preferential chain transfer reactions at higher temperatures. Polymer-grafted carbon whisker gave a stable colloidal dispersion in a good solvent for grafted polymer.  相似文献   

5.
The kinetics of bulk and precipitation polymerization of vinyl chloride has been studied over wide range of reaction temperature by using γ-ray induced initiation. The autoacceleration effect, which has been observed by many investigators in the case of chemically initiated bulk polymerization of vinyl chloride above 40°C and has been the most controversial aspect of the bulk polymerization of vinyl chloride, was found to disappear in the bulk polymerization below 0°C. In the bulk polymerization at 40°C, the autoacceleration effect was observed up to 20%, in agreement with the results of previous investigators, and a pronounced effect of the size of polymer particles on the time–conversion curve was observed. The kinetics of precipitation polymerization of vinyl chloride in the presence of some nonsolvents was successfully described by a oneparameter equation. A kinetic scheme, which clearly explains the zero-order reaction behavior of bulk polymerization at low temperature and the kinetic behavior of precipitation polymerization described by the empirical equation, is proposed. The autoacceleration effect in the bulk polymerization at 40°C was considered to be essentially the same phenomenon as the small retardation period observed in the bulk polymerization at low temperature.  相似文献   

6.
It is a common view that poly(vinyl acetate) has many branches at the acetyl side group, but that the corresponding poly(vinyl alcohol) has little branching. In order to study the branching in poly(vinyl acetate) and poly(vinyl alcohol) which is formed by chain transfer to polymer, the polymerization of 14C-labeled vinyl acetate in the presence of crosslinked poly(vinyl acetate), which was able to be decrosslinked to give soluble polymers, was investigated at 60°C and 0°C. This system made it possible to separate as well as to distinguish the graft polymer from the newly polymerized homopolymer. Furthermore, the degree of grafting onto the acetoxymethyl group and onto the main chain were estimated. It became clear that, in the polymerization of vinyl acetate, chain transfer to the polymer main chain takes place about 2.4 times as frequently at 60°C as that to the acetoxy group and about 4.8 times as frequently at 0°C.  相似文献   

7.
2-Phthalimido-1,3-butadiene (2-PB) was polymerized either radically or thermally in bulk and in solution. While the polymer obtained by solution polymerization was soluble in some solvents such as halogenated hydrocarbons, dioxane, and dimethylformamide and had a softening point in the range of 160–170°C., that obtained by polymerization in bulk was insoluble in any solvent and only swollen on being immersed in such solvents as above. The reduced viscosity of the soluble polymer obtained by solution polymerization was approximately 1.0, and this value remained almost unchanged with varying polymerization time. Likewise the cationic polymerization in acetylene tetrachloride or in chloroform at 20°C. with the use of cationic catalysts such as boron trifluoride and stannic chloride was attempted, but no formation of polymer was observed. This monomer preferentially reacted with acrylonitrile, methyl methacrylate, styrene, and N-vinylphthalimide to form the respective copolymers; it reacted somewhat less readily with vinyl acetate. The monomer reactivity ratios in the copolymerization with styrene were calculated by the Fineman and Ross method and found to be r1 (2-PB) = 5.2 and r2 (styrene) = 0.11, respectively, from which the Q, e parameters were successively evaluated to be Q = 5.0 and e = ?0.05. The fact that e value is close to zero, easily explains why this monomer can copolymerize well both with acrylonitrile, which has a highly positive value of e (1.2) and with styrene, for which e is considerably negative (-0.8).  相似文献   

8.
Anionic polymerization of vinyl chloride has been studied. Of the organometallic compounds tested as initiators, only butyllithium was found to initiate polymerization. Polymerization in bulk at 0°C and with tert-butyllithium as initiator gave poly(vinyl chloride) in a yield of 38% with M n = 55,000. Tacticity of the anionic PVC was similar to that of conventional PVC prepared at similar temperatures. Anionic PVC was found to be less branched and more heat-stable than the conventional polymer.  相似文献   

9.
It was found that diacyl peroxides can be formed in situ in a polymerization medium by the reaction of an acid anhydride with hydrogen peroxide. For the specific application to aqueous vinyl chloride polymerization, an initiator system based on the base-catalyzed reaction of isobutyric anhydride with hydrogen peroxide to produce diisobutyryl peroxide gave very good results. In contrast, the acid chloride was completely ineffective as a peroxide precursor in this reaction. Studies pointing to diisobutyryl peroxide as the initiating species; investigations of reactant stoichiometry; and comparison of the in situ system with preformed diisobutyryl peroxide were conducted. It was shown that this system makes possible the polymerization of vinyl chloride at 30°C at rates comparable to those obtained with dialkyl peroxydicarbonates at 50°C, thus demonstrating the ability of this system to initiate vinyl chloride polymerization at low temperature. The rates of vinyl chloride polymerization with the use of different concentrations of in situ diisobutyryl peroxide at 30, 40, and 50°C were determined. Similarly, polymerization rates with the use of combinations of in situ diisobutyryl peroxide and n-propyl peroxydicarbonate were determined. The data obtained demonstrate rapid initiation of the polymerization reaction and a reduction in polymerization time made possible by this dual initiator system. These results were verified in pilot-plant and commercial-scale PVC polymerizations.  相似文献   

10.
The polymerization of vinyl monomers (N-phenylmaleimide, acrylamide, acrylonitrile, methyl vinyl ketone, methyl methacrylate, vinyl chloride, and styrene) with sodium salts of Brønsted acids (sodium cyanide, sodium nitrite, sodium hydroxide, etc.) were investigated at 0°C in dimethylformamide. N-Phenylmaleimide, acrylonitrile, and methyl vinyl ketone were found to undergo polymerization with sodium cyanide, however the other monomers were not polymerized with this salt. In the polymerizations of acrylonitrile and N-phenylmaleimide with sodium cyanide, the rates of the polymerizations were found to be proportinal to the initiator concentration and to the square of the monomer concentration. The activation energy of acrylonitrile polymerization was 3.7 kcal/mole, and that of N-phenylmaleimide ws 3.0 kcal/mole. The results of the copolymerization of acrylonitrile with methyl methacrylate at 0°C in dimethyl-formamide with sodium cyanide confirm that these polymerizations proceeded by an anionic mechanism initiated by the Michael addition reaction of the monomers with the salts. In these polymerizations, the monomer reactivity increased with increase in the e values. The initiation ability of sodium salts increased with increasing pKa of the conjugate acids and with decreasing electronegativity of metal ion in the series of lithium, sodium, and potassium cyanide. The polymerizations took place only in aprotic polar solvents, and did not occur in weak polar solvents and in protonic solvents.  相似文献   

11.
The rate of bulk polymerization of styrene initiated by silver salt–organic halide systems was measured at 0°C. Neither of the catalyst components initiated the polymerization when used alone, while combined catalysts containing both components initiated the polymerization in the case that the components reacted with each other with precipitation of silver halide. The rate in the early stage of the polymerization increased with an increase in reaction time. Plots of yield against the second power of time gave a linear relation in the early stage of the polymerization. The slope of the line was taken as a measure of catalytic activity. The catalytic activity was markedly influenced by the kinds of the components. The activities of silver perchlorate–organic halide systems increased in the following order of halides: chloride < bromide < iodide in most cases. The activities of silver perchlorate–organic chloride systems increased with a decrease in ionization potentials of the organic groups of the chlorides. The activities of silver salt–benzyl bromide systems increased with a decrease in the pKa values of conjugate acids of silver salts. From these results, it was concluded that the facility of ionic dissociation of the catalyst components determined the activities.  相似文献   

12.
The polymerization of isobutyl vinyl ether was studied in a heterogeneous system using iron (II) sulfate calcined in air at various temperatures as a catalyst. The maximum activity was shown by the catalyst calcined at 700°C, which effected the polymerization at room temperature in a few seconds, while the sulfate treated at 750°C was totally inactive. Poly(vinyl ethyl ether) was also obtained by the FeSO4 (700°C) catalyst at room temperature. This catalyst formed the crystalline polymer (melting temperature 135–138°C) when the reaction was performed in toluene as solvent at room temperature. Poisoning experiments with Hammett indicators were carried out with the FeSO4 (700°C) catalyst. The treatment with n-butylamine rendered it inactive in the reaction of isobutyl vinyl ether, while its catalytic activity was little affected by dicinnamalacetone. On the basis of the observed results, the nature of active sites of catalyst is discussed.  相似文献   

13.
Effects of a common-ion salt, n-Bu4NClO4, on the cationic polymerization of styrene and p-chlorostyrene by acetyl perchlorate were studied in a variety of solvents at 0°C. In polymerization (in CH2Cl2) which yielded polymers with a bimodal molecular weight distribution (MWD), addition of the salt suppressed the formation of higher polymers, but affected neither the molecular weight nor the steric structure of the lower polymers. The polymerization rate decreased with increasing salt concentration and became constant at or above a certain concentration. In nitrobenzene, on the other hand, the MWD of the polymers was unimodal and steric structure was unchanged even in the presence of salt at a concentration 50 times that of the catalyst. However, the polymerization rate and the polymer molecular weight decreased monotonically as salt concentration increased. On the basis of these results, it was concluded that the ion pair in methylene chloride differs from that in nitrobenzene, and that the species in the latter solvent is similar in nature to free ions. The fractional contribution of the dissociated and nondissociated propagating species to polymer formation was determined from the rate depression caused by addition of the salt.  相似文献   

14.
The γ-ray-induced copolymerization of ethylene and vinyl chloride with the use of liquid carbon dioxide as a solvent was studied under a total pressure of 400 kg/cm2, with a dose rate of 2.5 × 104 rad/hr at 30°C. A rubberlike, sticky polymer is obtained when the molar concentration of vinyl chloride is less than 30% in the monomer mixture, and the polymer is a white powder at higher concentrations of vinyl chloride. Infrared, x-ray, and differential thermal analyses confirm that the polymerization products are noncrystalline, true random copolymers. The rate of copolymerization decreases markedly when a small amount of vinyl chloride is added to ethylene monomer. In the range of vinyl chloride concentration higher than 5%, however, the rate and the molecular weight of copolymer increase with increasing concentration of vinyl chloride. It has been concluded from kinetic considerations based on these results that the rate of initiation increases proportionally with the concentration of vinyl chloride. Further, the growing chain radicals are shown to be deactivated by the cross-termination reaction between the radicals with terminal unit of ethylene and vinyl chloride, and no transfer reaction occurs.  相似文献   

15.
Graft copolymerization of a bicycloorthoester (BOE) with polymer-supported sulfonium salts was studied. Several polymer-supported sulfonium salts were prepared by the homopolymerizations of p-vinylbenzyl tetramethylenesulfonium hexafluoroantimonate ( 2 ) and 4-(p-vinylphenyl)butyl tetramethylenesulfonium hexafluoroantimonate ( 3 ), and by the copolymerizations of 2 with some vinyl monomers (n-butyl vinyl ether, styrene, acrylonitrile, and p-styrenesulfonic acid potassium salt). These sulfonium salts could initiate the polymerization of BOE to give grafted polymers. Temperature dependences of the catalytic activity of them were not so dramatic as that of benzyl tetramethylenesulfonium hexafluoroantimonate ( 1 ), but the activities of them were higher than that of 1 at temperatures lower than 80°C. The conversion of BOE in the polymerizations with these polymer initiators was ca. 30–70% at 120°C for 7 h. An effect of the comonomer structure on the catalytic activity was observed and styrene was the best comonomer for 2 in terms of the reactivity of the copolymer. The spacer-modified sulfonium salt (homopolymer of 3 ) was slightly lower than polymer-supported benzyl type sulfonium salt (homopolymer of 2 ) in the catalytic activity.  相似文献   

16.
Peroxidized polypropylene has been used as a heterofunctional initiator for a two-step emulsion polymerization of a vinyl monomer (M1) and vinyl chloride with the production of vinyl chloride block copolymers. Styrene, methyl-, and n-butyl methacrylate and methyl-, ethyl-, n-butyl-, and 2-ethyl-hexyl acrylate have been used as M1 and polymerized at 30–40°C. In the second step vinyl chloride was polymerized at 50°C. The range of chemical composition of the block copolymers depends on the rate of the first-step polymerization of M1 and the duration of the second step; e.g., with 2-ethyl-hexyl acrylate block copolymers could be obtained with a vinyl chloride content of 25–90%. The block copolymers have been submitted to precipitation fractionation and GPC analysis. Noteworthy is the absence of any significant amount of homopolymers, as well as poly(M1)n as PVC. The absence of homo-PVC was interpreted by an intra- and intermolecular tertiary hydrogen atom transfer from polypropylene residue to growing PVC sequences. The presence of saturated end groups on the PVC chains is responsible for the improved thermal stability of these block polymers, as well as their low rate of dehydrochlorination (180°C). Molecular aggregation in solution has been shown by molecular weight determination in benzene and tetrahydrofuran.  相似文献   

17.
Gamma radiation induced polymerization of vinyl chloride (VC) and copolymerization of vinyl chloride (VC)-vinyl acetate (VAc) in Taiwan cedars have been investigated at low temperatures. The polymerization-rate of VC and the copolymerization-rate of VC-VAc system in wood were found to be proportional to the n powers of the dose-rate, where n became close to the value of 1 as the polymerization temperature being lowered below 0°C. The oxygen in air was recognized to induce the delay of the induction period due to its retardation on the polymerization. The apparent activation energies of VC and VC-VAc for the polymerization and the copolymerization in wood were determined by use of the Arrhenius plotting as 4.0 Kcal/mole and 3.4 Kcal/mole respectively at the temperature-range of —15°C~20°C. The degree of polymerization of VC was greatly affected by the polymerization temperature, although it was observed to be independent on the total gamma dose within 1 Mrad and the kinds of wood. No graft reaction of PVC polymer and PVC-PVAc copolymer onto the wood cellulose was found, while low graft percentage of about 3% being obtained at 20° C in the case of using swelling agents. However, this value was found to be decreased to 0.1% at the temperature of —15°C. Based on the above-mentioned experimental results, the radiation induced low temperature polymerization of VC or copolymerization of VC-VAc system in Taiwan produced cedars are considered to proceed with radical polymerization mechanism.  相似文献   

18.
The polymerization of vinyl chloride initiated by alkyllithium compounds was investigated. The effect of temperature, initiator concentration, and monomer concentration on the conversion and the properties of the resulting polymers were studied. The optimum temperature in the investigated range (between ?20°C and +20°C) was +5°C. The conversion is directly proportional to the concentration of both the initiator and the monomer. The molecular weight is inversely proportional to the initiator concentration and directly proportional to the monomer concentration. Under optimum conditions the molecular weight of the polymers is as high as 140,000. These results differ by an order from hitherto published data on the nonradical polymerization of vinyl chloride. The proportion of isotactic and syndiotactic structures resulting from the presence of tert-butyllithium does not differ from that obtained by radical polymerization, but the occurrence of anomalous structures is reduced to a minimum. The stability of the macromolecules is higher. A mechanism of the polymerization is suggested.  相似文献   

19.
The cationic polymerization of vinyl chloride, vinylidene chloride, and cis- and trans- 1,2-dichloroethylenes with the use of Lewis acid-type catalysts has been studied. Vinylidene chloride is smoothly polymerized in the presence of ZnCl2 at 40°C to form the dimer, 1,1,3,3-tetrachlorobutene-1, and poly(vinylidene chloride) having somewhat increased crystallinity (45%). Vinyl chloride is polymerized very slowly in the presence of AlCl3 and TiCl4 to give dimeric, trimeric, tetrameric, and low molecular weight polymer products. The polymerization is followed by carbonium ion isomerization that leads to reaction products of branched structure. The cis- and trans-1,2-dichloroethylenes react in the presence of AlCl3 only at 50–60°C, and their polymerization is terminated at the stage of dimer and cyclic trimer formation. A mechanism of carbonium ion-initiated polymerization of chloroethylenes is proposed, and the causes which lead to early termination of polymerization are discussed.  相似文献   

20.
Several novel vinyl polymers containing five fused benzene rings in side chains were synthesized either by polymerization of the appropriate vinyl monomers or by chemical modification of the appropriate polymer. Thus, 3-(α-acryloyloxy)ethylperylene was prepared from perylene by Friedel-Crafts acylation with acetyl chloride and subsequent hydrogenation, followed by the reaction of the resulting alcohol with acryloyl chloride. 3-Acrylamido- or methacrylaminoperylene was prepared by the nitration of perylene, reduction of the resulting 3-nitroperylene, and the reaction with acryloyl or methacryloyl chloride. p-Vinylbenzal-3-acetylperylene was prepared by the condensation and dehydration reaction between p-vinylbenzaldehyde and 3-acetylperylene under alkaline medium, and, in the same manner, p-vinylbenzal-3-aminoperylene was prepared from p-vinyl benzaldehyde and 3-aminoperylene. All these monomers were polymerized with α,α′-azobisisobutyronitrile as catalyst in solution to afford the corresponding vinyl polymers. A vinyl polymer containing perylene-3-acetyl side chain was also prepared by the acetalization of poly(vinyl alcohol) with 3-formylperylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号