首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH?N(C6F5)][(p‐XC6H4)N?C(But)CHC(CF3)O]TiCl2 ( 3a : X = F, 3b : X = Cl, 3c : X = Br) were synthesized and investigated as the catalysts for ethylene polymerization and ethylene/norbornene copolymerization. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts exhibited high activities toward ethylene polymerization, similar to their parallel parent catalysts. Furthermore, they also displayed favorable ability to efficiently incorporate norbornene into the polymer chains and produce high molecular weight copolymers under the mild conditions, though the copolymerization of ethylene with norbornene leads to relatively lower activities. The sterically open structure of the β‐enaminoketonato ligand is responsible for the high norbornene incorporation. The norbornene concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer. When the norbornene concentration in the feed is higher than 0.4 mol/L, the heteroligated catalysts mediated the living copolymerization of ethylene with norbornene to form narrow molecular weight distribution copolymers (Mw/Mn < 1.20), which suggested that chain termination or transfer reaction could be efficiently suppressed via the addition of norbornene into the reaction medium. Polymer yields, catalytic activity, molecular weight, and norbornene incorporation can be controlled within a wide range by the variation of the reaction parameters such as comonomer content in the feed, reaction time, and temperature. ©2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6072–6082, 2009  相似文献   

2.
The incorporation of 5‐vinyl‐2‐norbornene (VNB) into ethylene‐norbornene copolymer was investigated with catalysts [Ph2C(Fluo)(Cp)]ZrCl2 ( 1 ), rac‐[Et(Ind)2]ZrCl2 ( 2 ), and [Me2Si(Me4Cp)tBuN]TiCl2 ( 3 ) in the presence of MAO by terpolymerizing different amounts of 5‐vinyl‐2‐norbornene with constant amounts of ethylene and norbornene at 60°C. The highest cycloolefin incorporations and highest activity in terpolymerizations were achieved with 1 . The distribution of the monomers in the terpolymer chain was determined by NMR spectroscopy. As confirmed by XRD and DSC analysis, catalysts 1 and 3 produced amorphous terpolymer, whereas 2 yielded terpolymer with crystalline fragments of long ethylene sequences. When compared with poly‐(ethylene‐co‐norbornene), VNB increased both the glass transition temperatures and molar masses of terpolymers produced with the constrained geometry catalyst whereas decreased those for the metallocenes.  相似文献   

3.
A number of metallocene/methylaluminoxane (MAO) catalysts have been compared for ethylene/propylene copolymerizations to find relationship between the polymerization activities, copolymer structures, and copolymerization reactivity ratio with the catalyst structures. Stereorigid racemic ethylene bis (indenyl) zirconium dichloride and the tetrahydro derivative exhibit very high activity of 10 7 g (mol Zr h bar)?1, giving copolymers having comonomer compositions about the same as the feed compositions, molecular weights increasing with the increase of ethylene in the feed, random incorporation of comonomers, and narrow molecular weight distribution indicative of a single catalytic species. Nonbridged bis (indenyl) zirconium behaved differently, favoring the incorporation of ethylene over propylene, producing copolymers whose molecular weight decreases with the increase of ethylene in the feed, broad molecular weight distribution, and a methanol soluble fraction. This catalyst system contains two or more active species. Simple methallocene catalysts have much lower polymerization activities. CpTiCl2/MAO produced copolymers with tendency toward alternation, whereas Cp2HfCl2/MAO gave copolymer containing short blocks of monomers.  相似文献   

4.
Homo‐ and copolymerization of ethylene and norbornene were investigated with bis(β‐diketiminato) titanium complexes [ArNC(CR3)CHC(CR3)NAr]2TiCl2 (R = F, Ar = 2,6‐diisopropylphenyl 2a; R = F, Ar = 2,6‐dimethylphenyl 2b ; R = H, Ar = 2,6‐diisopropylphenyl 2c ; R = H, Ar = 2,6‐dimethylphenyl 2d) in the presence of methylaluminoxane (MAO). The influence of steric and electric effects of complexes on catalytic activity was evaluated. With MAO as cocatalyst, complexes 2a–d are moderately active catalysts for ethylene polymerization producing high‐molecular weight polyethylenes bearing linear structures, but low active catalysts for norbornene polymerization. Moreover, 2a – d are also active ethylene–norbornene (E–N) copolymerization catalysts. The incorporation of norbornene in the E–N copolymer could be controlled by varying the charged norbornene. 13C NMR analyses showed the microstructures of the E–N copolymers were predominantly alternated and isolated norbornene units in copolymer, dyad, and triad sequences of norbornene were detected in the E–N copolymers with high incorporated content of norbornene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 93–101, 2008  相似文献   

5.
Copolymerization behavior of ethylene (E) and propylene (P) using ansa‐dimethylsilylene(fluorenyl)(amido)dimethyltitanium complex was investigated. P was more reactive than E regardless of the chain‐end monomer unit, which was very unusual in the coordination polymerization system. The terpolymerizations of E, P and norbornene (NB) or 5‐ethylidene‐2‐norbornene (5E2N) were also performed. The each content in the E/P/NB terpolymer was independently controlled by the initial concentration of NB and E/P feed ratio. Glass transition temperature (Tg) of the terpolymer was raised in proportion to the NB content and close to that of the corresponding NB/E random copolymer with the same NB content. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 685–691  相似文献   

6.
Detailed studies were made of the course of the terpolymerization of ethylene, propylene, and dicyclopentadiene to form unsaturated elastomers. All the dicyclopentadiene was added at the start of a polymerization, but the monoolefins were added continuously throughout the run. Under these conditions, unsaturation of the initial polymer is fairly high but decreases steadily as the reaction progresses. From analyses of the initial samples from each run, the catalyst of VCl4 (with Al2Et3Cl3 cocatalyst), with heptane as the polymerization solvent, was most efficient for introducing unsaturation into terpolymer. This system also produces gel in the terpolymer in the latter stages of reaction, however. Catalysts of VCl4, VOCl3, or V(C5H7O2)3, with Al2Et3Cl3 cocatalyst, in benzene solvent gave terpolymers of quite similar unsaturations. With all systems, terpolymer yield increases very rapidly in the first few minutes of reaction, then very slowly for the remainder of the 30-min. reaction time, reflecting the rapid loss of activity of the vanadium catalysts. Molecular weight growth of the terpolymer prepared in heptane was extremely rapid, reaching a high value in a few minutes. When prepared in benzene, the terpolymers showed a steady increase in molecular weight throughout the reaction but reached only a moderate final value (as expressed by inherent viscosity).  相似文献   

7.
A series of ethylene, propylene homopolymerizations, and ethylene/propylene copolymerization catalyzed with rac‐Et(Ind)2ZrCl2/modified methylaluminoxane (MMAO) were conducted under the same conditions for different duration ranging from 2.5 to 30 min, and quenched with 2‐thiophenecarbonyl chloride to label a 2‐thiophenecarbonyl on each propagation chain end. The change of active center ratio ([C*]/[Zr]) with polymerization time in each polymerization system was determined. Changes of polymerization rate, molecular weight, isotacticity (for propylene homopolymerization) and copolymer composition with time were also studied. [C*]/[Zr] strongly depended on type of monomer, with the propylene homopolymerization system presented much lower [C*]/[Zr] (ca. 25%) than the ethylene homopolymerization and ethylene–propylene copolymerization systems. In the copolymerization system, [C*]/[Zr] increased continuously in the reaction process until a maximum value of 98.7% was reached, which was much higher than the maximum [C*]/[Zr] of ethylene homopolymerization (ca. 70%). The chain propagation rate constant (kp) of propylene polymerization is very close to that of ethylene polymerization, but the propylene insertion rate constant is much smaller than the ethylene insertion rate constant in the copolymerization system, meaning that the active centers in the homopolymerization system are different from those in the copolymerization system. Ethylene insertion rate constant in the copolymerization system was much higher than that in the ethylene homopolymerization in the first 10 min of reaction. A mechanistic model was proposed to explain the observed activation of ethylene polymerization by propylene addition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 867–875  相似文献   

8.
Intrinsic viscosities have been measured at 25° on five ethylene–propylene copolymer samples ranging in composition from 33 to 75 mole-% ethylene. The solvents used were n-C8 and n-C16 linear alkanes and two branched alkanes, 2,2,4-trimethylpentane and 2,2,4,4,6,8,8-heptamethylnonane (br-C16). This choice was based on the supposition that the branched solvent would prefer the propylene segments and the linear solvent the ethylene segments, due to similarity in shape and possibly in orientational order. It was found that [η]n ? [η]br ≡ Δ[η] is indeed negative for propylene-rich copolymers, zero for a 56% ethylene copolymer, and positive for ethylene-rich copolymers. The Stockmayer–Fixman relation was used to obtain from Δ[η] a molecular-weight independent function of composition. The quantities (Δ[η]/[η])(1 + aM?1/2) and Δ[η]/M are linear with the mole percent ethylene in the range investigated with 200 ≤ a ≤ 2000. The possibility of using these results for composition determination in ethylene–propylene copolymers is discussed. Intrinsic viscosities in the same solvents are reported for two samples of a terpolymer with ethylidene norbornene.  相似文献   

9.
This article discusses the similarities and differences between active centers in propylene and ethylene polymerization reactions over the same Ti‐based catalysts. These correlations were examined by comparing the polymerization kinetics of both monomers over two different Ti‐based catalyst systems, δ‐TiCl3‐AlEt3 and TiCl4/DBP/MgCl2‐AlEt3/PhSi(OEt)3, by comparing the molecular weight distributions of respective polymers, in consecutive ethylene/propylene and propylene/ethylene homopolymerization reactions, and by examining the IR spectra of “impact‐resistant” polypropylene (a mixture of isotactic polypropylene and an ethylene/propylene copolymer). The results of these experiments indicated that Ti‐based catalysts contain two families of active centers. The centers of the first family, which are relatively unstable kinetically, are capable of polymerizing and copolymerizing all olefins. This family includes from four to six populations of centers that differ in their stereospecificity, average molecular weights of polymer molecules they produce, and in the values of reactivity ratios in olefin copolymerization reactions. The centers of the second family (two populations of centers) efficiently polymerize only ethylene. They do not homopolymerize α‐olefins and, if used in ethylene/α‐olefin copolymerization reactions, incorporate α‐olefin molecules very poorly. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1745–1758, 2003  相似文献   

10.
A series of heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐tBu‐2‐OC6H3CH?N(C6F5)] [PhN?C(CF3)CHCRO]TiCl2 [ 3a : R = Ph, 3b : R = C6H4Cl(p), 3c : R = C6H4OMe(p), 3d : R = C6H4Me(p), 3e : R = C6H4Me(o)] were synthesized and characterized. Molecular structures of 3b and 3c were further confirmed by X‐ray crystallographic analyses. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts displayed favorable ability to incorporate 5‐vinyl‐2‐norbornene (VNB) and 5‐ethylidene‐2‐norbornene (ENB) into the polymer chains, affording high‐molecular weight copolymers with high‐comonomer incorporations and alternating sequence under the mild conditions. The comonomer concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resultant copolymer. At initial comonomer concentration of higher than 0.4 mol/L, the titanium complexes with electron‐donating groups in the β‐enaminoketonato moiety mediated room‐temperature living ethylene/VNB or ENB copolymerizations. Polymerization results coupled with density functional theory calculations suggested that the highly controlled living copolymerization is probably a consequence of the difficulty in chain transfer of VNB (or ENB)‐last‐inserted species and some characteristics of living ethylene polymerization under limited conditions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
[3‐Cyano‐2‐(2,6‐diisopropylphenyl)aminopent‐2‐en‐4‐(phenylimine)tris (pentafluorophenyl)borate](η5‐C5H5)ZrCl2, [(B(C6F5)3‐ NC‐nacnac)CpZrCl2], precatalyst ( 2 ) can be treated with low concentrations of methylaluminoxane (MAO) to generate active sites capable of copolymerizing ethylene with 1‐octadecene or norbornene under mild conditions. A series of poly(ethylene‐co‐octadecene) and poly(ethylene‐co‐norbornene) copolymers were prepared, and their properties were characterized by NMR, differential scanning calorimetry, and mechanical analysis. The results show that this system produced poly(ethylene‐co‐octadecene) copolymers with a branching content of about 8 mol %. However, upon increasing the comonomer concentration, a drastic reduction in the Mn of the product is observed concomitant with an increase in comonomer incorporation. This leads to a gradual decrease in Young's modulus and stress at break, indicating an increase in the “softness” of the copolymer. In the case of copolymerizations of ethylene and norbornene, the catalytic system ( 2 /MAO) shows a substantial decrease in reactivity in the presence of norbornene and generates copolymer chains in which 5–10 mol % norbornene is in blocks. We also observe that ethylene norbornene copolymers exhibit a high degree of alternating insertions (close to 50%), as determined by NMR spectroscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Olefin polymerizations catalyzed by Cp′TiCl2(O‐2,6‐iPr2C6H3) ( 1 – 5 ; Cp′ = cyclopentadienyl group), RuCl2(ethylene)(pybox) { 7 ; pybox = 2,6‐bis[(4S)‐4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine}, and FeCl2(pybox) ( 8 ) were investigated in the presence of a cocatalyst. The Cp*TiCl2(O‐2,6‐iPr2C6H3) ( 5 )–methylaluminoxane (MAO) catalyst exhibited remarkable catalytic activity for both ethylene and 1‐hexene polymerizations, and the effect of the substituents on the cyclopentadienyl group was an important factor for the catalytic activity. A high level of 1‐hexene incorporation and a lower rE · rH value with 5 than with [Me2Si(C5Me4)(NtBu)]TiCl2 ( 6 ) were obtained, despite the rather wide bond angle of Cp Ti O (120.5°) of 5 compared with the bond angle of Cp Ti N of 6 (107.6°). The 7 –MAO catalyst exhibited moderate catalytic activity for ethylene homopolymerization and ethylene/1‐hexene copolymerization, and the resultant copolymer incorporated 1‐hexene. The 8 –MAO catalyst also exhibited activity for ethylene polymerization, and an attempted ethylene/1‐hexene copolymerization gave linear polyethylene. The efficient polymerization of a norbornene macromonomer bearing a ring‐opened poly(norbornene) substituent was accomplished by ringopening metathesis polymerization with the well‐defined Mo(CHCMe2Ph)(N‐2,6‐iPr2C6H3)[OCMe(CF3)2]2 ( 10 ). The key step for the macromonomer synthesis was the exclusive end‐capping of the ring‐opened poly(norbornene) with p‐Me3SiOC6H4CHO, and the use of 10 was effective for this polymerization proceeding with complete conversion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4613–4626, 2000  相似文献   

13.
The polymerization of propylene and ethylene and the copolymerization of these olefins with postmetallocene catalysts [(4R,5R)-2,2-dimethyl-α,α,α′,α′-tetra(perfluorophenyl)-1,3-dioxolane-4,5-dimethanol] titanium(IV) dichloride and bis{N-(3,5-ditert-butylsalicylidene)-4-[bis(5-methyl-2-furyl)methyl]aniline}titanium( IV) dichloride have been studied. The polymerization of propylene and its copolymerization with ethylene have been carried out in a liquid monomer, while the polymerization of ethylene has been performed in toluene at the constant concentration of the monomer. Polymethylaluminoxane has been used as a cocatalyst. The activity of the catalysts in the polymerization of propylene and ethylene at 50°C is ~ 10 and ~45 kg PP/mol Ti h mol C3H6/l and 178.5 and 2700 kg PE/mol Ti h mol C2H4/l, respectively. It has been established that, in the copolymerization of propylene with ethylene, the active sites of both catalysts selectively polymerize ethylene. The resulting copolymers have a block structure (r 1 r 2= 4.6); as a result, the crystalline phase of polyethylene is formed in them. Polypropylene and propylene-ethylene copolymers are elastomeric materials. Polypropylene samples synthesized with [(4R,5R)-2,2-dimethyl-α,α,α′,α′-tetra(perfluorophenyl)-1,3-dioxolane-4,5-dimethanol]titanium(IV) dichloride demonstrate a high melting point (150–157°C) in combination with good elastic properties. Polyethylene is a linear polymer with the degree of crystallinity varying from 37 to 45% and a melting point of 133–134°C. The mechanical properties of the polymers and copolymers have been investigated.  相似文献   

14.
The article discusses recent results of kinetic analysis of propylene and ethylene polymerization reactions with several types of Ti-based catalysts. All these catalysts, after activation with organoaluminum cocatalysts, contain from two to four types of highly isospecific centers (which produce the bulk of the crystalline fraction of polypropylene) as well as several centers of reduced isospecificity. The following subjects are discussed: the distribution of active centers with respect to isospecificity, the effect of hydrogen on polymerization rates of propylene and ethylene, and similarities and differences between active centers in propylene and ethylene polymerization reactions over the same catalysts. Ti-based catalysts contain two families of active centers. The centers of the first family are capable of polymerizing and copolymerizing all α-olefins and ethylene. The centers of the second family efficiently polymerize only ethylene. Differences in the kinetic effects of hydrogen and α-olefins on polymerization reactions of ethylene and propylene can be rationalized using a single assumption that active centers with alkyl groups containing methyl groups in the β-position with respect to the Ti atom, Ti-CH(CH3)R, are unusually unreactive in olefin insertion reactions. In the case of ethylene polymerization reactions, such an alkyl group is the ethyl group (in the Ti-C2H5 moiety) and, in the case of propylene polymerization reactions, it is predominantly the isopropyl group in the Ti-CH(CH3)2 moiety. Published in Russian in Vysokomolekulyarnye Soedineniya, Ser. A, 2008, Vol. 50, No. 11, pp. 1911–1934. The text was submitted by the authors in English.  相似文献   

15.
A new silolene-bridged compound, racemic (1,4-butanediyl) silylene-bis (1-η5-in-denyl) dichlorozirconium ( 1 ) was synthesized by reacting ZrCl4 with C4H8Si (IndLi)2 in THF. 1 was reacted with trialkylaluminum and then with triphenylcarbenium tetrakis (penta-fluorophenyl) borate ( 2 ) to produce in situ the zirconocenium ion ( 1 +). This “constraint geometry” catalyst is exceedingly stereoselective for propylene polymerization at low temperature (Tp = ?55°C), producing refluxing n-heptane insoluble isotactic poly(propylene) (i-PP) with a yield of 99.4%, Tm = 164.3°C, δHf = 20.22 cal/g and M?w = 350 000. It has catalytic activities of 107?108 g PP/(mol Zr · [C3H6] · h) in propylene polymerization at the Tp ranging from ?55°C to 70°C, and 108 polymer/(mol Zr · [monomer] · h) in ethylene polymerization. The stereospecificity of 1 + decreases gradually as Tp approaches 20°C. At higher temperatures the catalytic species rapidly loses stereochemical control. Under all experimental conditions 1 + is more stereospecific than the analogous cation derived from rac-dimethylsilylenebis (1-η5-indenyl)dichlorozirconium ( 4 ). The variations of polymerization activities in ethylene and in propylene for Tp from ?55°C to +70°C indicates a Michaelis Mention kinetics. The zirconocenium-propylene π-complex has a larger insertion rate constant but lower thermal stability than the corresponding ethylene π-complex. This catalyst copolymerizes ethylene and propylene with reactivity ratios of comparable magnitude rE ? 4rp. Furthermore, rE.rp ? 0.5 indicating random copolymer formation. Both 1 and 4 activated with methylaluminoxane (MAO) exhibit much slower polymerization rates, and, under certain conditions, a lower stereo-selectivity than the corresponding 1 + or 4 + system. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
A series of Me4Cp–amido complexes {[η51‐(Me4C5)SiMe2NR]TiCl2; R = t‐Bu, 1 ; C6H5, 2 ; C6F5, 3 ; SO2Ph, 4 ; or SO2Me, 5 } were prepared and investigated for olefin polymerization in the presence of methylaluminoxane (MAO). X‐ray crystallography of complexes 3 and 4 revealed very long Ti N bonds relative to the bonds of 1 . These complexes were employed for ethylene–styrene copolymerizations, styrene homopolymerizations, and propylene homopolymerizations in the presence of MAO. The productivities of the catalysts derived from 3 – 5 were much lower than the productivity of the catalyst derived from 1 for the propylene polymerizations and ethylene–styrene copolymerizations, whereas the styrene polymerization activities were much higher for the catalysts derived from 3 – 5 than for the catalyst derived from 1 . The polymerization behavior of the catalysts derived from the metallocenes 3 – 5 were more reminiscent of monocyclopentadienyl titanocene Cp′TiX3/MAO catalysts than of CpATiX2/MAO catalysts such as 1 containing alkylamido ligands. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4649–4660, 2000  相似文献   

17.
A series of mononuclear (M1 and M2) and dinuclear (C1–C6) Ni α‐diimine catalysts activated by modified methylaluminoxane were used in polymerization of ethylene. Catalyst C2 bearing the optimum bulkiness showed the highest activity (1.6 × 106 g PE (mol Ni)?1 h?1) and the lowest short‐chain branching (32.5/1000 C) in comparison to the dinuclear and mononuclear analogues. Although the mononuclear catalysts M1 and M2 polymerized ethylene to a branched amorphous polymer, the dinuclear catalysts led to different branched semicrystalline polyethylenes. Homogeneity and heterogeneity in the microstructure of the polyethylene samples was observed. Different trends for each catalyst were assigned to syn and anti stereoisomers. In addition, thermal behavior of the samples in the successive self‐nucleation and annealing technique exhibited different orders and intensities from methylene sequences and lamellae thickness in respect of each stereoisomer behavior. Higher selectivity of hexyl branches obtained by catalyst C2 showed a cooperative effect between the centers. The results also revealed that for catalysts C5 and C6, selectivity of methyl branches led to very high endotherms and crystalline sequences with melting temperatures higher than that of 100% crystalline polyethylene indicating ethylene/propylene copolymer analogues. For catalysts C3 and C4, more vinyl end groups were a result of the long distance between the Ni centers. Kinetic profiles of polymerization along with a computational study of the precatalysts and catalysts demonstrated that there is a direct relation between rate constant, energy interval of catalyst and precatalyst, and interaction energy of Et···methyl cationic active center (Et···MCC or π–Comp.). Based on this, narrow energy interval (activation energy) of precatalyst and catalyst leads to fast and higher activation rate (catalyst M2), and strong interaction of ethylene and catalyst leads to high monomer uptake and productivity (catalyst C2). Moreover, theoretical parameters including electron affinity, Mulliken charge on Ni, chemical potential and hardness, and global electrophilicity showed optimum values for C2.  相似文献   

18.
The polymerization of ethylene with Ziegler-Natta catalysts in the presence of carbon black has shown three characteristic features both with a heterogeneous catalyst, AlBu3? TiCl4, and with a soluble catalyst, Cl2Ti(C5H5)2? AlEt2Cl. They are, in order of increasing importance: reactivity of the organoaluminum derivatives with surface chemical groups of the carbon black, adsorption of a certain amount of organoaluminum compounds on the carbon black surface, and influence of the specific surface of carbon black, which controls the dispersion degree of the catalytic system. Furthermore, it was possible to obtain polyethylene by this procedure, containing different amounts and different types of carbon black.  相似文献   

19.
EPDM terpolymers with ethylidene norbornene as diene monomer could be prepared by means of a soluble Ziegler catalyst formed from biscyclopentadienyl zirconium dimethyl and methylaluminoxane. The overall activities lie between 100 and 1000 kg EPDM/(molZr h bar), obtainable at zirconium concentrations as low as 5 × 10?7 mol/L. After an induction period (0.5–5 h) the polymerization rates increased and then leveled to a value which was constant for several days. From copolymerization kinetics reactivity ratios r12 = 31.5, r21 = 5 × 10?3, and r13 = 3.1 could be derived, and by 13C-NMR spectroscopy r12 · r21 = 0.3 was found (1: ethylene, 2: propylene and 3: ethylidene norbornene). The regiospecifity of the catalyst toward propylene leads exclusively to the formation of head-to-tail enchainments. The diene polymerizes via vinyl polymerization of the cyclic double bond, and the tendency to branching is low. Molecular weights were estimated between 40,000 and 160,000. The average molecular weight distribution of 1.7 is remarkably narrow. Glass transition temperatures of ?60 to ?50°C could be observed. The cure behavior and the physical properties of cured samples were also tested.  相似文献   

20.
DADNiX2 nickel–diimine complexes [DAD = 2,6‐iPr2? C6H3? N?C(Me)? C(Me)?N? 2,6‐iPr2? C6H3] containing nonchelating pseudohalide ligands [X = isothiocyanate (NCS) for complex 1 and isoselenocyanate (NCSe) for complex 2 ] were synthesized, and the propylene polymerization with these complexes and also with the Br ligand (X = Br for complex 3 ) activated by methylaluminoxane (MAO) were investigated (systems 1 , 2 , and 3 /MAO). The polypropylenes obtained with systems 1 , 2 , and 3 were amorphous polymers and had high molecular weights and narrow molecular weight distributions. Catalyst system 1 showed a relatively high activity even at a low Al/Ni ratio and reached the maximum activity at the molar ratio of Al/Ni = 500, unlike system 3 . Increases in the reaction temperature and propylene pressure favored an increase in the catalytic activity. The spectra of polypropylenes looked like those of propylene–ethylene copolymers containing syndiotactic propylene and ethylene sequences. At the same temperature and pressure, system 2 presented the highest number of propylene sequences, and system 3 presented the lowest. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 458–466, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号