首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two cyano-bridged assemblies, [FeIII(salpn)]2[FeII(CN)5NO] (1) and [FeIII (salpn)]2[NiII(CN)4] (2) [salpn = N, N-1,2-propylenebis(salicylideneiminato)dianion], have been prepared and structurally and magnetically characterized. In each complex, [Fe(CN)5NO]2– or [Ni(CN)4]2– coordinates with four [Fe(salpn)]+ cations using four co-planar CN ligands, whereas each [Fe(salpn)]+ links two [Fe(CN)5NO]2– or [Ni(CN)4]2– ions in the trans form, which results in a two-dimensional (2D) network consisting of pillow-like octanuclear [—MII—CN—FeIII—NC—]4 units (M = Fe or Ni). In complex (1), the NO group of [Fe(CN)5NO]2– remains monodentate and the bond angle of FeII—N—O is 180.0°. The variable temperature magnetic susceptibilities, measured in the 5–300 K range, show weak intralayer antiferromagnetic interactions in both complexes with the intramolecular iron(III)iron(III) exchange integrals of –0.017 cm–1 for (1) and –0.020 cm–1 for (2), respectively.  相似文献   

2.
The reaction of ZrCl4 with oleum (65 % SO3) in the presence of Ag2SO4 at 250 °C yielded colorless single crystals of Zr(S2O7)2 [orthorhombic, Pccn, Z = 4, a = 709.08(6) pm, b = 1442.2(2) pm, c = 942.23(9) pm, V = 963.5(2) × 106 pm3]. Zr(S2O7)2 shows Zr4+ ions in an eightfold distorted square antiprismatic coordination of oxygen atoms belonging to four chelating disulfate units. Each S2O72– ion is connected to a further Zr4+ ion leading to chains according to 1[Zr(S2O7)4/2]. The same reaction at a temperature of 150 °C resulted in the formation of Ag4[Zr(S2O7)4] [monoclinic, C2/c, Z = 4, a = 1829.35(9) pm, b = 704.37(3) pm, c = 1999.1(1) pm, β = 117.844(2)°, V = 2277.6(2) × 106 pm3]. Ag4[Zr(S2O7)4] exhibits the unprecedented [Zr(S2O7)4]4– anion, in which the central Zr4+ cation is coordinated by four chelating disulfate units. Thus, in Ag4[Zr(S2O7)4] the 1[[Zr(S2O7)4/2] chains observed in Zr(S2O7)2 are formally cut into pieces by the implementation of Ag+ ions.  相似文献   

3.
Two new borosulfates were obtained either by an open vessel synthesis from sulfuric acid and B(OH)3, yielding (NH4)3[B(SO4)3] or from solvothermal synthesis in oleum enriched sulfuric acid and B(OH)3, yielding Sr[B2(SO4)4]. (NH4)3[B(SO4)3] crystallizes homeotypic to K3[B(SO4)3] in space group Ibca (Z = 8, a = 728.58(3) pm, b = 1470.84(7) pm, c = 2270.52(11) pm), comprising open branched vierer single chains {1[B(SO4)2(SO4)2/2]3–}. Sr[B2(SO4)4] crystallizes as an ordered variant of Pb[B2(SO4)4] in space group Pnna (Z = 4, a = 1257.4(4) pm, b = 1242.1(4) pm, c = 731.9(2) pm), consisting of loop branched vierer single chains {1[B(SO4)4/2]2–}. Vibrational spectroscopy confirms both refined structure models. Thermal analysis of the dried powders, showed a decomposition towards the binary and ternary components, whereas a thermal treatment in the presence of the mother liquor promotes a decomposition of Sr[B2(SO4)4] towards Sr[B2O(SO4)3].  相似文献   

4.
Reaction of Tin Chlorides with Polysulfides. Crystal Structures of (PPh4)2[SnCl2(S6)2], (PPh4)2[Sn4Cl4S5(S3)O], and (PPh4)2[SnCl6] · S8 · 2CH3CN . The reaction of PPh4[SnCl3] with Na2S4 in acetonitrile in the presence of small amounts of water yields (PPh4)2[Sn4Cl4S5(S3)O] and minor amounts of (PPh4)2[SnCl2(S6)2], PPh4Cl · 2S8 and (PPh4)2[SnCl6]. SnCl4 is partially reduced by (PPh4)2Sx, PPh4[SnCl3] and (PPh4)2[SnCl6] · S8 · 2CH3CN being produced. According to the X-ray crystal structure determination the [Sn4Cl4S5(S3)O]2?-ion consists of an O atom that is coordinated by four Sn atoms which in turn are liked with one another by five single S atoms and one S3 group. In the [SnCl2(S6)2]2?-ion the Sn atom is octahedrally coordinated by two Cl atoms in trans arrangement and by two chelating S6 groups. Octahedral [SnCl6]2? ions and S8 molecules in the crown conformation are present in (PPh4)4[SnCl6] · S8 · 2CH3CN.  相似文献   

5.
The title compound, tricaesium sodium iron(III) μ3‐oxido‐hexa‐μ2‐sulfato‐tris[aquairon(III)] pentahydrate, Cs2.91Na1.34Fe3+0.25[Fe3O(SO4)6(H2O)3]·5H2O, belongs to the family of Maus's salts, K5[Fe3O(SO4)6(H2O)3]·6H2O, which is based on the triaqua‐μ3‐oxido‐hexa‐μ‐sulfato‐triferrate(III) anion, [Fe3O(SO4)6(H2O)3]5−, with Fe in a characteristically distorted octahedral coordination environment, sharing a common corner via an oxide O atom. Cs in four different cation sites, Na in three different cation sites and five water molecules link the anions in three dimensions and set up a crystal structure in which those parts parallel to (001) and within 0.05 < z < 0.95 have a distinct trigonal pseudosymmetry, whereas the cation arrangement and bonding near z∼ 0 generate a clear‐cut noncentrosymmetric polar edifice with the monoclinic space group C2. The structure shows some cation disorder in the region near z ∼ , where one Na atom in octahedral coordination is partly substituted by Fe3+, and a Cs atom is substituted by small amounts of Na on a separate nearby site. One Na atom, located on a twofold axis at z = 0 and tetrahedrally coordinated by four sulfate O atoms of two [Fe3O(SO4)6(H2O)3]5− units, plays a key role in generating the noncentrosymmetric structure. Three of the seven different cation sites are on twofold axes (one Na+ site and two Cs+ sites), and all other atoms of the structure are in general positions.  相似文献   

6.
Preparation, Raman Spectra, and Crystal Structures of V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] The oxo-sulfato-vanadates(V) V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] have been prepared as crystals suitable for X-ray structure determination. In all structures sulfate acts as an unidentate ligand only toward a single vanadium atom. The structure of V2O3(SO4)2 consists of a threedimensional network of pairs of cornershared VO6 octahedra with one terminal oxygen atom each, and SO4 tetrahedra. All oxygen atoms of the sulfate ions are coordinated. NH4[VO(SO4)2] and K[VO(SO4)2] are isostructural. VO6 octahedra with one terminal oxygen atom and pairs of sulfate tetrahedra form infinite chains by corner sharing. The chains are weakly interlinked to layers. The sulfate ions are distorted towards planar SO3 molecules and single oxygen atoms attached to vanadium. This structural detail gives an explanation for the mechanism of the reversible reaction K[VO(SO4)2] ? K[VO2(SO4)] + SO3 at 400°C. Raman spectra of the compounds have been recorded and interpreted with respect to their structures. Crystal data: V2O3(SO4)2, monoclinic, space group P21/a, a = 947.2(4), b = 891.3(3), c? 989.1(4) pm, β = 104.56(3)°, Z = 4, 878 unique data, R(Rw) = 0.039(0,033); K[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(2), b = 869.6(9), c = 1 627(1)pm, Z = 4, 642 unique data, R(Rw) = 0,11(0,10); NH4[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(1), b = 870.0(2), c = 1 676.7(4)pm, Z = 4, 768 unique data, R(Rw) = 0.088(0.083).  相似文献   

7.
Synthesis and Crystal Structures of (NEt4)2[TeS3], (NEt4)2[Te(S5)(S7)], and (NEt4)4[Te(S5)2][Te(S7)2] (NEt4)2[TeS3] was obtained by the reaction of NEt4Cl, Na2S4 and tellurium in acetonitrile. It reacts with sulfur, yielding (NEt4)2[Te(S5)(S7)], which is transformed to (NEt4)4[Te(S5)2][Te(S7)2] by recrystallization from hot acetonitrile. According to the X-ray structure analysis, crystals of (NEt4)2[TeS3] are monoclinic (space group P21/c) and form twins with the twinning plane (001); they contain pyramidal TeS32– ions. (NEt4)2[Te(S5)(S7)] forms triclinic twins (space group P1) with the twinning plane (010). In the [Te(S5)(S7)]2– ion an S5 and an S7 atom group are bonded in a chelate manner to the tellurium atom, which has square coordination. (NEt4)4[Te(S5)2][Te(S7)2] (monoclinic, space group P21/c) contains two kinds of anions, the known [Te(S5)2]2– and the new [Te(S7)2]2– ion which has two S7 chelating groups.  相似文献   

8.
The novel oxothiomolybdate Mn2(tren)3[Mo2O2S6]2·1.3H2O [tren = tris(2-aminoethyl)amine], synthesized under solvothermal conditions, consists of one-dimensional novel [Mn2(tren)3] n 4+ chains and discrete [Mo2O2S6]2– anions. There are two crystallographically independent chains and four [Mo2O2S6]2– anions in the asymmetric unit. Each Mn atom in the cationic chains is sixfold coordinated by N atoms of the chelating tren molecules. Two of the four crystallographically independent Mn atoms are tridentately coordinated by two tren molecules, whereas the other two are coordinated tetradentately by one tren molecule and monodentately by the remaining primary amino groups from the tren molecules that act as tridentate ligands. The tren ligand bonding modes lead to the formation of the polymeric [Mn2(tren)3] n 4+ chain. One of the four Mn atoms is in the unusual trigonal prismatic coordination state with six surrounding N atoms.  相似文献   

9.
The reaction of oleum (65 % SO3) with the tetrachlorides of silicon, germanium, and titanium, respectively, led to the complex disulfates Sr2[M(S2O7)4] (M=Si, Ge), Ba[M(S2O7)3] (M=Si, Ge, Ti) and Pb[M(S2O7)3] (M=Ge, Ti) if strontium, barium, and lead were used as divalent counter cations. The strontium compounds exhibit the unique tetrakis‐(disulfato)‐metallate anions [M(S2O7)4]4? with the silicon and germanium atoms in octahedral coordination of two chelating and two monodentate disulfate groups. All of the other compounds display tris‐(disulfato)‐metallate anions [M(S2O7)3]2? with three chelating disulfate groups surrounding the M atoms. Thermoanalytical investigations on the germanium compounds Sr2[Ge(S2O7)4] and Ba[Ge(S2O7)3] revealed their decomposition in multi‐step processes leading to a mixture of BSO4 and BGe4O9 (B=Sr, Ba), while the thermal degradation of Pb[Ti(S2O7)3] yields PbTiO3. For selected examples, IR data are additionally presented.  相似文献   

10.
Yuan  Ai-Hua  Lu  Lu-De  Shen  Xiao-Ping  Chen  Li-Zhuang  Yu  Kai-Bei 《Transition Metal Chemistry》2003,28(2):163-167
A cyanide-bridged FeIII–FeII mixed-valence assembly, [FeIII(salen)]2[FeII(CN)5NO] [salen = N,N-ethylenebis(salicylideneiminato)dianion], prepared by slow diffusion of an aqueous solution of Na2[Fe(CN)5NO] · 2H2O and a MeOH solution of [Fe(salen)NO3] in an H tube, has been characterized by X-ray structure analysis, i.r. spectra and magnetic measurements. The product assumes a two-dimensional network structure consisting of pillow-like octanuclear [—FeII—CN—FeIII—NC—]4 units with dimensions: FeII—C = 1.942(7) Å, C—N = 1.139(9) Å, FeIII—N = 2.173(6) Å, FeII—C—N = 178.0(6)°, FeIII—N—C = 163.4(6)°. The FeII—N—O bond angle is linear (180.0°). The variable temperature magnetic susceptibility, measured in the 4.8–300 K range, indicates the presence of a weak intralayer antiferromagnetic interaction and gives an FeIII–FeIII exchange integral of –0.033 cm–1.  相似文献   

11.
The crystal and molecular structure of dipotassium di‐μ‐oxo‐bis[aqua(oxalato‐O1,O2)oxomolybdenum(III)] trihydrate, K2­[Mo2O4(C2O4)2(H2O)2]·3H2O, has been determined from X‐ray diffraction data. In the dimeric anion, which has approximate twofold symmetry, each Mo atom is in a distorted octahedral coordination, being bonded to one terminal oxo‐O atom, two bridging O atoms, two O atoms from the oxalato ligand and one from the water mol­ecule. Bond lengths trans to the multiple‐bonded terminal oxo ligand are larger than those in the cis position, confirming the trans influence as a generally valid rule.  相似文献   

12.
The carbamoyl complex [C(NMe2)3][(CO)4Fe{C(O)NMe2}] ( 1 ) reacts with InMe3 under loss of the methyl groups to produce a variety of compounds from which only the anionic cluster complexes [C(NMe2)3]3[Fe2(CO)6(μ‐CO){μ‐InFe(CO)4(μ‐O2CNMe2)InFe(CO)4}] ([C N 3]3[ 2 ]) and [C(NMe2)3]2[{(CO)4Fe}2In(O2CNMe2)]·THF ([C N 3]2[ 3 ]·THF) could be crystallized and characterized by X‐ray analyses. The anion [ 2 ]3? has a Fe2(CO)9‐like structure and both anions contain the carbaminato ligand either in a bridging or in a chelating function.  相似文献   

13.
A new magnesium borate Mg2[B2O4(OH)2]·H2O has been synthesized by the method of phase transformation of double salt at hydrothermal condition and characterized by XRD, IR, TG and DSC. The enthalpy of solution of Mg2[B2O4(OH)2]·H2O in 0.9764 mol L–1 HCl was determined. With the incorporation of the enthalpies of solution of H3BO3 in HCl (aq), of MgO in (HCl+H3BO3) (aq), and the standard molar enthalpies of formation of MgO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of –(3185.78±1.91) kJ mol–1 of Mg2[B2O4(OH)2]·H2O was obtained.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

14.
Thiocomplexes of Molybdenum. Crystal Structure of a Mixed Single Crystal (PPh3Me)2[Mo2Br6(NO)4]/(PPh3Me)2[Mo2Br6S2(NO)2] The reactions of (PPh4)2MoS4 with MoBr4 and MoBr2(NO)2 resp. lead to the binuclear complexes (PPh4)2[S2MoS2MoBr3(SMe2)] and (PPh4)[S2MoS2MoBr2(NO)2], in which the molybdenum atoms are linked by sulfido bridges. The preparation of (PPh3Me)2S6 and (AsPh4)2S7 from Na2S4 and PPh3MeBr, and AsPh4Cl, respectively, in ethanol solution is described. Disulfido briges are a feature of (AsPh4)2[Mo2Br6(S2)2(SMe2)2], which is obtained from MoBr4(SMe2)2 and (AsPh4)2S7. Mixed single crystals containing 2/3 (PPh3Me)2[Mo2Br6(NO)4] and 1/3 (PPh3Me)2[Mo2Br6S2(NO)2] are formed in the reaction of MoBr2(NO)2 with (PPh3Me)2S6, as shown by X-ray single crystal structure determination. The compound crystallizes monoclinic in the space group C2/c (Internat. Tab. Nr. 15) with four formula units per unit cell (2351 independent observed reflexions, Rw = 0.037). The cell parameters are a = 1603 pm, b = 1549 pm, c = 1863 pm; β = 92.2°. The complexes consist of PPh3Me cations and the dimeric anions [Mo2Br6(NO)4]2? and [Mo2Br6S2(NO)2]2? which occur in the ratio 2:1. In these the molybdenum atoms are connected via MoBr2Mo bridges of slightly different lengths (Mo? Br 265 pm and 267 pm) forming a controsymmetric double octahedron. All molybdenum atoms have two terminal bromo ligands with Mo? Br bond lengths of 258 pm and 260 pm; in the [Mo2Br6(NO)4]2? ion each molybdenum has two covalently bonded nitrosyl groups on cis-position with Mo? N bond lengths of 183 pm. In the [Mo2Br6S2(NO)2]2? ion one of the two nitrosyl groups at each metal atom is substituted by a terminal sulfido ligand with a Mo? S bond length of 240 pm. The i.r. spectra are reported.  相似文献   

15.
Bis(disulfido)bridged NbIV cluster oxalate complexes [Nb2(S2)2(C2O4)4]4– were prepared by ligand substitution reaction from the aqua ion [Nb2(μ‐S2)2(H2O)8]4+ and isolated as K4[Nb2(S2)2(C2O4)4] · 6 H2O ( 1 ), (NH4)6[Nb2(S2)2(C2O4)4](C2O4) ( 2 ) and Cs4[Nb2(S2)2(C2O4)4] · 4 H2O ( 3 ). The crystal structures of 1 and 2 were determined. The crystals of 1 belong to the space group P1, a = 720.94(7) pm, b = 983.64(10) pm, c = 1071.45(10) pm, α = 109.812(1)°, β = 91.586(2)°, γ = 105.257(2)°. The crystals of 2 are monoclinic, space group C2/c, a = 1567.9(2) pm, b = 1906.6(3) pm, c = 3000.9(4) pm, β = 95.502(2)°. The packing in 2 shows alternating layers of cluster anions and of ammonium/uncoordinated oxalates perpendicular to the [1 0 1] direction. Vibration spectra, electrochemistry and thermogravimetric properties of the complexes are also discussed.  相似文献   

16.
In biological electron transport chains, [2Fe–2S] clusters have versatile electrochemical properties and serve as important electron carriers in a wide variety of biological processes. To understand structural effects on the variation in reduction potentials in [2Fe–2S] proteins, a series of [2Fe–2S] protein analogs with bidentate ligands ( − SC 2 H 4 NH 2) were recently produced by collision-induced dissociation of [Fe 4 S 4(L)4]2− (L = SC 2 H 4 NH 2). Combined with photoelectron spectroscopy findings, the reaction mechanisms of [Fe 4 S 4(L)4]2− to [Fe 2 S 2(L)2] and the structural effects of ligands on the electronic and redox properties of the [2Fe–2S] clusters are investigated here using broken-symmetry density functional theory method. Our calculations suggest that [Fe 2 S 22L)(cisL)] and [Fe 2 S 22L)2] are the experimentally observed [2Fe–2S] products, which are generated via a fission process of [Fe 4 S 4(L)4]2− followed by rearrangement of ligands of [Fe 2 S 2(L)2]. Moreover, structural variation of the ferrous center may dramatically affect the oxidation energy of the [2Fe–2S] clusters.  相似文献   

17.
The oxidation of elemental palladium with oleum (65 % SO3) in the presence of barium carbonate in torch‐sealed glass ampoules at 180 °C leads to yellow single crystals of the heteroleptic palladate Ba2[Pd(HS2O7)2(S3O10)2] (triclinic, P ; Z=1; a=884.18(3), b=927.68(3), c=938.77(4) pm; α=60.473(1), β=80.266(2), γ=87.746(2)°). The crystal structure shows the Pd2+ ions in a square‐planar coordination of oxygen atoms of two hydrogendisulfate as well as of two trisulfate anions. The compound is the first example of the rarely seen S3O102? and HS2O7? anions acting as ligands in a complex anion and, moreover, the first heteroleptic polysulfatometallate known so far. The complex formation leads to a stabilization of the trisulfate anion relative to its uncoordinated congener. Ba2[Pd(HS2O7)2(S3O10)2] has been further characterized by vibrational spectroscopy and quantum chemical calculations. Thermal analyses by means of thermogravimetric/differential thermal analysis (TG/DTA) measurements show that the compound decomposes to yield elemental palladium and BaSO4.  相似文献   

18.
(PPh4)2[OsCl3(NO) (SnCl3)2]; Preparation, I.R. Spectrum, and Crystal Structure (P(C6H5)4)2[OsCl3(NO)(SnCl3)2] yields from the reaction of OsCl3(NO) with PPh4-[SnCl3] in dichloro methane forming red crystals. The complex crystallizes monoclinic in the space group C2/c with four formula units per unit cell. The crystal structure was determined by aid of X-ray diffraction data (2261 independent, observed reflexions, R = 4.9%). The cell parameters are a = 1369, b = 1989, c = 2088 pm, β = 99.54°. The structure consists of tetraphenyl phosphonium cations and [OsCl3(NO)(SnCl3)2]2?-anions. In the anion the osmium is coordinated octahedrally by three chlorine atoms (mean bond length r Os? Cl 238 pm), two SnCl3 groups in transposition to each other (r Os? Sn 265 pm) and the N-atom of the covalently bonded nitrosyl ligand (r Os? N 173 pm). The i.r. spectrum of the anion is reported and assigned.  相似文献   

19.
Synthesis and Crystal Structures of (PPh4)2[TeS3] · 2 CH3CN and (PPh4)2[Te(S5)2] (PPh4)2[TeS3] · 2 CH3CN was obtained by the reaction of PPh4Cl, Na2S4 and Te in acetonitrile. With sulfur it reacts yielding (PPh4)2[Te(S5)2]. The crystal structures of both products were determined by X-ray diffraction. (PPh4)2[TeS3] · 2 CH3CN: triclinic, space group P1 , Z = 2, R = 0.041 for 4 629 reflexions; it contains trigonal-pyramidal [TeS3]2? ions with an average Te? S bond length of 233 pm. (PPh3)2[Te(S5)2]: monoclinic, P21/n, Z = 2, R = 0.037 for 2 341 reflexions. In the [Te(S5)2]2? ion the tellurium atom has a nearly square coordination by four S atoms. Along with the Te atoms each of the two S5 groups forms a ring with chair conformation.  相似文献   

20.
Synthesis and Crystal Structures of (PPh4)2[In(S4)(S6)Cl] and (PPh4)2[In(S4)Cl3] InCl and PPh4Cl yield (PPh4)2[In2Cl6] in acetonitrile. This reacts with Na2S4 in presence of PPh4Cl, forming (PPh4)2[In(S4)(S6)Cl]. Its crystal structure was determined by X-ray diffraction (R = 0.075, 2 282 observed reflexions). It is isotypic with (PPh4)2[In(S4)(S6)Br] and contains anions with trigonal-bipyramidal coordination of In, Cl occupying an axial position, and the S4 and S6 groups being bonded in a chelate manner. The reaction of (PPh4)2[In2Cl6] and sulfur in acetonitrile yielded (PPh4)2[InCl5] and (PPh4)2[In(S4)Cl3]. The crystal structure analysis of the latter (R = 0.072, 4 080 reflexions) revealed an anion with distorted trigonal-bipyramidal coordination of In, the S4 group occupying one axial and one equatorial position; the S4 group shows positional disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号