首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
杨双燕  王婷婷  李春芳 《光学学报》2012,32(6):626002-226
介绍了非近轴光束的表示理论,利用该表示理论很好地解决了非近轴光束的角动量问题,发现非近轴光束的总角动量可以严格地分解成自旋和轨道两部分,但是两者都依赖于由偏振椭圆度表征的光束的偏振状态。主要研究了柱矢量光束的角动量问题。给出了动量空间和位形空间中的柱矢量光束表达式和角动量算符表达式。通过分析两个空间中的角动量算符及柱矢量光束表达式,发现在这两种空间中,具有螺旋型相位的柱矢量光束是角动量算符沿着传播方向的分量的本征态,其本征值与偏振椭圆度无关,这为计算这类特殊光束的角动量提供了一种新方法。  相似文献   

2.
The spin-orbit interaction (SOI) of light generated by tight focusing in optical tweezers is regularly employed in generating angular momentum - both spin and orbital - the effects being extensively observed in trapped mesoscopic particles. Specifically, the transverse spin angular momentum (TSAM), which arises due to the longitudinal component of the electromagnetic field generated by tight focusing is of special interest, both in terms of fundamental studies and associated applications. This study provides an effective and optimal strategy for generating TSAM in optical tweezers by tightly focusing first-order radially and azimuthally polarized vector beams with no intrinsic angular momentum (AM) into a refractive index stratified medium. The choice of such input fields ensures that the longitudinal spin angular momentum (LSAM) arising from the electric (magnetic) field for the radial (azimuthal) polarization is zero. As a result, the effects of the electric and magnetic TSAM are exclusively observed separately in the case of input first-order radially and azimuthally polarized vector beams on single optically trapped birefringent particles. This research opens up new and simple avenues for exotic and complex particle manipulation in optical tweezers.  相似文献   

3.
Starting from Maxwell’s equations and considering the linear electro-optic effect as a perturbation, we present a generalized wave coupling theory of linear electro-optic effect in absorbent medium. We give the rigorous solution of the resultant equations for a light wave propagating along any direction with an external dc electric field along an arbitrary direction. As an application, we use the theory to discuss the influence of absorption on the light wave in a KTP crystal. The results demonstrate that the absorption coefficients influence not only the amplitude but also the phase of the light wave.  相似文献   

4.
We use a Laguerre-Gaussian laser mode within an optical tweezers arrangement to demonstrate the transfer of the orbital angular momentum of a laser mode to a trapped particle. The particle is optically confined in three dimensions and can be made to rotate; thus the apparatus is an optical spanner. We show that the spin angular momentum of +/-?per photon associated with circularly polarized light can add to, or subtract from, the orbital angular momentum to give a total angular momentum. The observed cancellation of the spin and orbital angular momentum shows that, as predicted, a Laguerre-Gaussian mode with an azimuthal mode index l=1 has a well-defined orbital angular momentum corresponding to ? per photon.  相似文献   

5.
The spin dynamics of electrons in low-symmetry quantum wells (QWs) under conditions of interband excitation by ultrashort unpolarized light pulses is investigated. It is shown that after the transmission, spin polarization appears in the system after a time comparable with the electron momentum relaxation time for an electron pulse and then vanishes. The microscopic theory of spin orientation of electrons by optical pulses carrying zero angular momentum is developed for asymmetric QWs grown from semiconductors with the zinc blende lattice along the [110] crystallographic direction. Pumping with unpolarized light in such structures in the normal incidence geometry induces a spin in the QW plane along the [1[`1]0][1\bar 10] axis.  相似文献   

6.
Osamu Yamashita 《Optik》2011,122(23):2119-2123
The spin angular momentum S of light has never been linked to the Faraday rotation of light traveling in an optically active medium possessing a rotational invariance of a crystal, because there was no helicity term associated with the phase shift in the previous torque equation for S. In order to relate the change in S with time to the Faraday rotation, therefore, we derived an exact torque equation for S. As a result, a magnetic helicity term appeared in a new torque equation for S, so that one-half of the phase shift derived from the helicity term was equivalent to the Faraday rotation angle. However, the orbital angular momentum L had no relation to the Faraday rotation. It was thus clarified that the change in S with time is related to the Faraday rotation angle of light traveling in an optically active medium, owing to the appearance of the helicity term without a rotational invariance around the optical axis. It was also demonstrated theoretically that the Faraday rotation is accompanied by a torque acting on the crystal so that the total angular momentum of light and matter is conserved.  相似文献   

7.
碳酸钙微粒光致旋转的实验和理论研究   总被引:3,自引:0,他引:3  
雷铭  姚保利 《光子学报》2007,36(5):816-819
理论分析了由于光束轨道角动量和自旋角动量传递以及微粒的特殊形状导致微粒旋转的机理.实验建立了单光束激光光镊装置,不仅可以捕获并移动直径为微米量级的微小粒子,而且利用圆偏振光与微粒之间角动量的传递,实现了对具有双折射特性的碳酸钙微粒的光致旋转.实验中发现微粒的旋转不仅取决于光束的偏振态,还与微粒本身的形状有关,解释了实验中观察到的几种旋转现象.碳酸钙微粒旋转的最高转速达到12转/秒,转速与激光功率成正比.  相似文献   

8.
After study of an electron moving in a loop of wire in an uniform external magnetic field with its velocity vector perpendicular to the field and quantization of the angular momentum of the moving electron in the equilibrium state, we find the quantum magnetic flux through the solenoids or loops of wire, like the quantum magnetic flux trapped in hollow superconducting cylinders. Optically active media have the helical molecular structure, which acts as the natural micro-solenoid for the electromagnetic waves passing through them. Applying the result of the quantized magnetic field in the propagation direction induced by helical molecules, we find that optic activity is the natural Faraday effect, when the optical rotation of a plane-polarized wave through an optically active medium is caused by the quantized magnetic field induced by the incident light, which has been confirmed by the experimental observations on α-quartz. Through measurements of the rotatory power and the Verdet constant of an optically active substance, we can determine the quantized magnetic field. PACS 03.70.+k; 33.55.Ad; 74.25.Ha; 78.20.Ek; 78.20.Ls  相似文献   

9.
Population inversion is observed between the field independent, ground hyperfine states of 87Rb using an optical pumping technique which is applicable to a large number of species of atoms and ions. Inversion occurs upon a coherent transfer of angular momentum to the 87Rb spin system from circularly polarized light propagating in a transverse direction to a magnetic field. Coherenc is established by modulating, at certain frequencies, the light intensity or magnetic field strength.  相似文献   

10.
We consider semiclassical higher-order wave packet solutions of the Schr?dinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) variant Planck's over 2pil (l is the vortex strength) along its main linear momentum. The probability current coils around the momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin l. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.  相似文献   

11.
Electromagnetic angular momentum describes the ability of electromagnetic field to impose torque on matter. We show that for an electromagnetic field ?C such as an optical beam field ?C in a medium, the torque density is determined by two fundamental quantities: the angular momentum flux tensor and the angular momentum density of the field. It is remarkable that the tensor alone gives the full picture of the angular momentum transfer between the field and the medium in all stationary electromagnetic phenomena. We derive a general expression for this tensor and apply the theory to several important examples without resorting to the classical paraxial approximation.  相似文献   

12.
We introduce the concept of quasi-intrinsic angular momentum to denote fields for which the mean value of the angular momentum is unaltered by a lateral shift of the rotation axis but the spectrum changes. This property is exemplified by the orbital angular momentum of a beam of light about its propagation direction. We propose an interferometric experiment to measure efficiently the exact angular momentum spectrum and variance for light beams with any arbitrary spatial distribution.  相似文献   

13.
It is shown theoretically that the phase conjugation of a speckle optical field in a Mandelstam-Brillouin mirror is accompanied by the excitation of helical hypersonic waves with a step equal to one-half of the optical wavelength. The excitation of these waves violates the initial isotropy of the dielectric medium. The predicted effect admits clear physical interpretation based on the angular momentum conservation. The angular momentum transfer from the light to the medium occurs in the vicinity of an optical singularity (optical vortex line) due to reversal of the light orbital angular momentum by the phase-conjugation mirror. The excitation of hypersonic waves transferring the angular momentum is the necessary condition for the reversal of the angular momentum of the reflected light.  相似文献   

14.
We demonstrate experimentally an optical process in which the spin angular momentum carried by a circularly polarized light beam is converted into orbital angular momentum, leading to the generation of helical modes with a wave-front helicity controlled by the input polarization. This phenomenon requires the interaction of light with matter that is both optically inhomogeneous and anisotropic. The underlying physics is also associated with the so-called Pancharatnam-Berry geometrical phases involved in any inhomogeneous transformation of the optical polarization.  相似文献   

15.
The tight focusing of spirally polarized focused vortex beams is analyzed numerically based on the vectorial Debye theory. The expressions for the electric field and the orbital angular momentum of focused beams are derived. It is shown that the intensity distribution in the focal plane is dependent on the specific spirally polarized state and the coefficient of the spiral polarization function. By presenting the phase contours of the component polarized in the radial direction, it is found that the radii of dislocation lines will increase with the increase of the power of the spirally polarization function. It is reveled that the same orbital angular momentum can be obtained for different spirally polarized state at certain distance along the propagation direction in the focal region. Besides, the orbital angular momentum distributions for different polarized states have fewer crossover points with each other for higher topological charge. The influence of the spirally polarized state on the orbital angular momentum in the focal plane is also studied.  相似文献   

16.
The spin angular momentum in an elliptically polarized beam of light plays several noteworthy roles in optical traps. It contributes to the linear momentum density in a nonuniform beam, and thus to the radiation pressure exerted on illuminated objects. It can be converted into orbital angular momentum, and thus can exert torques even on optically isotropic objects. Its curl, moreover, contributes to both forces and torques without spin-to-orbit conversion. We demonstrate these effects experimentally by tracking colloidal spheres diffusing in elliptically polarized optical tweezers. Clusters of spheres circulate deterministically about the beam's axis. A single sphere, by contrast, undergoes stochastic Brownian vortex circulation that maps out the optical force field.  相似文献   

17.
We report the experimental observation of alignment to orientation conversion in the 7D3/2 and 9D3/2 states of Cs in the presence of an external dc electric field and without the influence of magnetic fields or atomic collisions. Initial alignment of angular momentum states was created by two-step excitation with linearly polarized laser radiation. The appearance of transverse orientation of angular momentum was confirmed by the observation of circularly polarized light. We present experimentally measured signals and compare them with the results of a detailed theoretical model based on the optical Bloch equations. The effect is odd under time reversal and should be taken into account in ever more sensitive searches for an electron electric dipole moment.  相似文献   

18.
The integral equation derived by Nieuwenhuizen and Luck for transmission of radiation through an optically thick diffusive medium is reconsidered in the light of radiative transfer theory and extended to slabs of arbitrary thickness.  相似文献   

19.
We develop the theory of interaction of the electromagnetic field and a single atom being in an arbitrary state and having an arbitrary direction of the angular momentum of the atomic electron with respect to the direction of the field polarization vector. It is shown that the atom response current has a tensor structure and depends on both the direction of the angular momentum of the atom, and the polarization vector of the external field. The tensor character of the response is determined by the externally induced anisotropic distribution of the probability density of spatial localization of the atomic electron. It is shown that the induced-anisotropy effects clarify the harmonic generation mechanism at play during the non-resonance interaction of laser radiation with atomic media. The developed theory is applied to the analysis of the problem about the generation of terahertz waves in a two-color laser field. It is shown that the change in the mutual orientation of wave polarization vectors leads to a significant increase in the efficiency of conversion of high-frequency fields to low-frequency ones. It is shown for the first time that the generation of terahertz waves is possible in the preionization regime, when the generation mechanism is related to atomic nonlinearity.  相似文献   

20.
The magnetization dynamics in magnetic double layers is affected by spin-pump and spin-sink effects. So far, only the spin pumping and its effect on the magnetic damping has been studied. However, due to conservation of angular momentum this spin current also leads to magnetic excitation of the layer dissipating this angular momentum. In this Letter we use time resolved magneto-optic Kerr effect to directly show the excitation due to the pure spin current. In particular, we observe magnetization dynamics due to transfer of angular momentum in magnetic double layers. In contrast to other experiments where a spin polarized charge current is passed through a nanomagnet, the effects discussed in this Letter are based on pure spin currents without net transfer of electric charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号