首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Aptamers are a promising class of affinity reagents because they are chemically synthesized, thus making them highly reproducible and distributable as sequence information rather than a physical entity. Although many high‐quality aptamers have been previously reported, it is difficult to routinely generate aptamers that possess both high affinity and specificity. One of the reasons is that conventional aptamer selection can only be performed either for affinity (positive selection) or for specificity (negative selection), but not both simultaneously. In this work, we harness the capacity of fluorescence activated cell sorting (FACS) for multicolor sorting to simultaneously screen for affinity and specificity at a throughput of 107 aptamers per hour. As a proof of principle, we generated DNA aptamers that exhibit picomolar to low nanomolar affinity in human serum for three diverse proteins, and show that these aptamers are capable of outperforming high‐quality monoclonal antibodies in a standard ELISA detection assay.  相似文献   

3.
Deng QP  Tie C  Zhou YL  Zhang XX 《Electrophoresis》2012,33(9-10):1465-1470
Aptamers, which are nucleic acid oligonucleotides that can bind targets with high affinity and specificity, have been widely applied as affinity probes in capillary electrophoresis (CE). Due to relative weak interaction between aptamers and small molecules, the application of aptamer-based CE is still limited in certain compounds. A new strategy that is based on the aptamer structure-switch concept was designed for small molecule detection by a novel CE method. A carboxyfluorescein (fluorescein amidite, FAM) label DNA aptamer was first incubated with partial complementary strand (CS), and then the free aptamer and the aptamer-CS duplex were well separated and determined by metal cation mediated CE/laser-induced fluorescence. When the target was introduced into the incubated sample, the hybridized form was destabilized, resulting in the changes of the fluorescence intensities of the free aptamer and the aptamer-CS duplex. The length of CS was investigated and 12 mer CS showed the best sensitivity for the detection of cocaine. The presented CE-LIF method, which combines the separation power of CE with the specificity of interactions occurring between target, aptamer, and CS, could be a universal detection strategy for other aptamer-specified small molecules.  相似文献   

4.
In DNA aptamer selection, existing methods do not discriminate aptamer sequences based on their binding affinity and function and the reproducibility of the selection is often poor, even for the selection of well-known aptamers like those that bind the commonly used model protein thrombin. In the present study, a novel single-round selection method (SR-CE selection) was developed by combining capillary electrophoresis (CE) with next generation sequencing. Using SR-CE selection, a successful semi-quantitative and semi-comprehensive aptamer selection for thrombin was demonstrated with high reproducibility for the first time. Selection rules based on dissociation equilibria and kinetics were devised to obtain families of analogous sequences. Selected sequences of the same family were shown to bind thrombin with high affinity. Furthermore, data acquired from SR-CE selection was mined by creating sub-libraries that were categorized by the functionality of the aptamers (e. g., pre-organized aptamers versus structure-induced aptamers). Using this approach, a novel fluorescent molecular recognition sensor for thrombin with nanomolar detection limits was discovered. Thus, in this proof-of-concept report, we have demonstrated the potential of a “DNA Aptaomics” approach to systematically design functional aptamers as well as to obtain high affinity aptamers.  相似文献   

5.
DNA aptamers specifically recognizing microbial cells and viruses have a range of analytical and therapeutic applications. This article describes recent advances in the development of aptamers targeting specific pathogens (e.g., live bacteria, whole viral particles, and virally-infected mammalian cells). Specific aptamers against pathogens have been used as affinity reagents to develop sandwich assays, to label and to image cells, to bind with cells for flow-cytometry analysis, and to act as probes for development of whole-cell biosensors. Future applications of aptamers to pathogens will benefit from recent advances in improved selection and new aptamers containing modified nucleotides, particularly slow off-rate modified aptamers (SOMAmers).  相似文献   

6.
In vitro selection can be used to generate functional nucleic acids such as aptamers and ribozymes that can recognize a variety of molecules with high affinity and specificity. Most often these recognition events are associated with structural alterations that can be converted into detectable signals. Several signaling aptamers and ribozymes constructed by both design and selection have been successfully utilized as sensitive detection reagents. Here we summarize the development of different types of signaling nucleic acids, and approaches that have been implemented in the screening format.  相似文献   

7.
Tang J  Xie J  Shao N  Yan Y 《Electrophoresis》2006,27(7):1303-1311
Aptamers which specifically recognize cytotoxin ricin were successfully selected using the two different in vitro selection methods. One selection method was used to isolate aptamers by affinity chromatography. Another selection method, named CE-SELEX, was carried out using CE as a separation approach. The high separation efficiency of CE evidently improved the rate of enrichment and obviously shortened the selection rounds, with near 87.2% binding just after the fourth round of selection. The aptamers A3, C1, and C5, derived from the two selection methods, were found to possess high affinity and specificity for ricin with the Kd values in the low nanomolar range, and did not recognize abrin toxin similar to ricin in the structures and properties, or BSA. Among the aptamers selected, A3 isolated by affinity chromatography shared extensive sequence similarity with C1 and C5 derived from CE-SELEX. They differed by only one base from each other. Their stable secondary structures predicted also had very similar structure motifs, and all folded a long and internal loop-embedded loop stem structure by base pairing. The ELISA and dot-blot analysis also proved that the selected DNA aptamers had the high specificity to ricin toxin.  相似文献   

8.
孟庆威  郭磊  谢剑炜 《色谱》2020,38(9):1078-1084
适配体-靶分子间的亲和作用表征是理解和应用核酸适配体发挥特异亲和作用的基本前提,CE技术则为上述表征提供了多模式的简捷途径,但多种模式体系间的结果往往存在差异,导致CE亲和评价可靠性和进一步应用受到限制,亟须建立多CE方法测定适配体-靶分子间亲和作用的系统比较研究。该研究以凝血酶及其特异性作用于肝素结合位点的适配体29mer为模型体系,基于CE-激光诱导荧光检测,引入CE-迎头分析(FA)评价方法,并比较其与预平衡-毛细管区带电泳(PE-CZE)的异同。首先进行了CE-FA方法分离条件的优化,37 ℃、0.5 h孵育完全后进样,进样时间为30 s,在较低工作温度(15 ℃)、较短毛细管长度(30 cm)及生物相容性好的缓冲体系2×TG(Tris-甘氨酸缓冲液,pH 8.5)条件下,经15 kV分离时,得到了稳定的荧光标记29mer(F29mer)-凝血酶复合物及游离F29mer平台峰。加入1 g/L牛血清白蛋白(BSA),有效提高了CE-FA平台峰高及迁移时间的重复性。详细讨论了两种方法下6种拟合方式的结果及特点。针对CE-FA和PE-CZE法,以结合适配体/游离适配体的浓度比对游离适配体浓度非线性拟合、平台峰高变化对浓度间的非线性拟合、平衡混合物的非平衡CE(NECEEM)计算等进行拟合。结果表明,6种拟合结果中5种不存在显著性差异,得到的解离常数(Kd)值均介于24~64 nmol/L范围。CE-FA法中的3种拟合结果符合度较好,说明CE-FA法易于在非平衡的CE分离体系下保持适配体-复合物间的结合-解离平衡,所测得Kd准确度较高。PE-CZE法中,借由降低的游离F29mer峰高对凝血酶浓度间的非线性拟合所得Kd值偏差过大;选择凝血酶浓度为F29mer浓度的0.5~2倍,且观察到明显的两峰间"指数桥"为前提,可经NECEEM法进行数据计算求解得到较为准确的Kd值。CE-FA法可与PE-CZE法互为印证,提高了亲和作用评价的可靠性。首选推荐使用多浓度平台峰高变化进行非线性拟合的CE-FA法,可相对有效克服高压电场对复合物稳定性的影响,具有适用范围广、方法稳定、结果拟合简便准确等特点。  相似文献   

9.
The separation and detection of complexes of aptamers and protein targets by capillary electrophoresis (CE) with laser-induced fluorescence was examined. Aptamer-thrombin and aptamer-immunoglobulin E (IgE) were used as model systems. Phosphate, 3-(N-morpholino)propanesulfonic acid with phosphate, and tris(hydroxyamino)methane-glycine-potassium (TGK) buffer at pH 8.4 were tested as electrophoresis media. Buffer had a large effect with TGK providing the most stable complexes for both protein-aptamer complexes. Conditions that suppressed electroosmotic flow, such as addition of hydroxypropylmethylcellulose to the media or modification of the capillary inner wall with polyacrylamide, were found to prevent detection of complexes. The effect of separation time and electric field were evaluated by monitoring complexes with electric field varied from 150-2850 V/cm and effective column lengths of 3.5 and 7.0 cm. As expected, shorter times on the column greatly increased peak heights for the complexes due to a combination of less dilution by diffusion and less dissociation on the column. High fields were found to have a detrimental effect on detection of complexes. It is concluded that the best conditions for detection of noncovalent complexes involve use of the minimal column length and electric field necessary to achieve separation. The results will be of interest in developing affinity probe CE assays wherein aptamers are used as affinity ligands.  相似文献   

10.
韩诗邈  赵丽萍  杨歌  屈锋 《色谱》2021,39(7):721-729
8-氧代鸟嘌呤DNA糖基化酶(OGG1)是人体中重要的功能蛋白,在修复DNA氧化性损伤过程中起关键作用。氧化应激等引起的氧化损伤易导致炎症反应的发生,对OGG1的抑制可以一定程度上起到缓解作用;对癌细胞OGG1的抑制有望作为癌症治疗的新方法。目前的研究多集中于小分子对OGG1功能的影响和调控,而OGG1的适配体筛选尚未见报道。作为功能配体,适配体具有合成简单、高亲和力及高特异性等优点。该文筛选了OGG1的核酸适配体,结合毛细管电泳高效快速的优点建立了两种基于毛细管电泳-指数富集进化(CE-SELEX)技术的筛选方法:同步竞争法和多轮筛选法。同步竞争法利用单链结合蛋白(SSB)与核酸库中单链核酸的强结合能力,与目标蛋白OGG1组成竞争体系,并通过增加SSB浓度来增加竞争筛选压力,以去除与OGG1弱结合的核酸序列,一步筛选即可获得与OGG1强结合的核酸序列。多轮筛选法在相同孵育条件和电泳条件下,经3轮筛选获得OGG1的核酸适配体。比较两种筛选方法的筛选结果,筛选结果中频次最高的3条候选核酸适配体序列一致,其解离常数(KD)值在1.71~2.64 μmol/L之间。分子对接分析结果表明候选适配体1(Apt 1)可能与OGG1中具有修复氧化性损伤功能的活性口袋结合。通过对两种筛选方法的对比,证明同步竞争法更加快速高效,对其他蛋白核酸适配体筛选方法的选择具有一定的指导意义。得到的适配体有望用于OGG1功能调控,以抑制其修复功能。  相似文献   

11.
核酸适配体是利用体外筛选技术,即指数富集的配体系统进化技术(SELEX),从核酸分子文库中得到的寡核苷酸片段。其与靶标物有很高的特异性和亲和力,将适配体作为识别单元的生物传感研究以及适配体偶联成像试剂的生物体内外成像研究在临床诊断中有很大的应用前景,此外,适配体靶向癌细胞或组织的治疗方法相比传统化学治疗副作用更小,在临床上也有极大的应用前景。本文综述了适配体目前在癌症诊断和靶向治疗两个方面的研究进展,并分析现阶段存在的问题以及面临的挑战。  相似文献   

12.
Li T  Du Y  Li B  Dong S 《Electrophoresis》2007,28(17):3122-3128
In this work, we report a simple and effective investigation into adaptive interactions between guanine-rich DNA aptamers and amino acid amides by CE with electrochemical (EC) detection. Argininamide (Arm) and tyrosinamide (Tym) were chosen as model molecules. On a copper electrode, Arm generated a good EC signal in 60 mM NaOH at 0.7 V (vs Ag/AgCl), while Tym was detected well on a platinum electrode at 1.3 V in 20 mM phosphate of pH 7.0. Based on their EC properties, the ligands themselves were used as indicators for the adaptive interactions investigated by CE-EC, making any step of labeling and/or modification of aptamers with indicators exempted. Hydrophilic ionic liquid was used as an additive in running buffer of CE to improve the sensitivity of Arm detection, whereas the additive was not used for Tym detection due to its negative effect. Two guanine-rich DNA aptamers were used for molecular recognition of Arm and Tym. When the aptamers were incubated with ligands, they bound the model molecules with high affinity and specificity, reflected by obvious decreases in the signals of ligands but no changes in those of the control molecules. However, the ligands were hardly affected by the control ssDNAs after incubation. The results revealed the specific recognition of Arm and Tym by the aptamers. The mechanisms for binding model molecules by aptamers were discussed. Not as expected, these aptamers were not to form the G-quartets, which were generally responsible for binding the ligands when the guanine-rich aptamers were used.  相似文献   

13.
陈尔凝  赵新颖  屈锋 《色谱》2016,34(4):389-396
核酸适配体(aptamer)是通过指数富集配体系统进化技术(SELEX)筛选的能够以高亲和力和高特异性识别靶标分子或细胞的核糖核酸(RNA)和单链脱氧核糖核酸(ssDNA)。作为化学抗体,核酸适配体的制备和合成比抗体的成本更低。核酸适配体的靶标范围极其广泛,包括小分子、生物大分子、细菌和细胞等。针对细菌靶标筛选的适配体,目前主要应用于食品、医药和环境中的细菌检测。细菌的核酸适配体筛选可以通过离心法将菌体-适配体复合物与游离的适配体分离,并通过荧光成像、荧光光谱分析、流式细胞仪分选、DNA捕获元件、酶联适配体分析等方法表征适配体与靶标的相互作用。筛选出的适配体可结合生物、化学检测方法用于细菌检测。本文介绍了细菌适配体的筛选和表征方法以及基于适配体的检测方法的最新进展,分析了不同检测方法的利弊,并列出了2011~2015年筛选的细菌的核酸适配体。  相似文献   

14.
Applications of affinity interactions in capillary electrophoresis   总被引:2,自引:0,他引:2  
Heegaard NH 《Electrophoresis》2003,24(22-23):3879-3891
Capillary electrophoresis (CE) has proven useful for the study of reversible molecular interactions. This is because highly efficient and reproducible separations take place in an environment where molecular interactions may contribute to selectivity without being inhibited by adverse buffer conditions. Affinity CE may be used to estimate quantitative binding data (binding constants and in some cases binding stoichiometries and rate constants) for various molecular interactions. Specific binding interactions (e.g., based on antibodies or aptamers) may also be utilized to quantitatively measure specific analytes using CE. Applications within these areas are here reviewed with focus on the last three years and with emphasis on novel concepts as well as innovative methodology and technology. It is concluded that the affinity CE approach is of growing versatility and will continue to play an integral role in discovering, characterizing, and exploiting biomolecular interactions.  相似文献   

15.
适配体是体外采用SELEX技术筛选得到的一段寡核苷酸序列(DNA或RNA),能折叠成一定的空间结构结合靶物质,实现特异性吸附。其功能类似抗体,但具有抗体无法比拟的优势,如靶物质范围广、特异性强、亲和力高、可体外筛选、易于标记和修饰、稳定性好、没有毒性、易制备等。近年来,适配体已在分析检测、生物化学、食品安全、临床医疗等领域得到广泛应用。本文综述了适配体在金属离子、抗生素、农药残留、真菌毒素、蛋白质、微生物、细胞等成分靶向特异性快速检测方面的应用进展,并分析其存在的局限性和问题,展望其应用前景和发展趋势,以期为适配体应用的拓展和相关研究提供依据和支持。  相似文献   

16.
Aptamers as analytical reagents   总被引:7,自引:0,他引:7  
Clark SL  Remcho VT 《Electrophoresis》2002,23(9):1335-1340
Many important analytical methods are based on molecular recognition. Aptamers are oligonucleotides that exhibit molecular recognition; they are capable of specifically binding a target molecule, and have exhibited affinity for several classes of molecules. The use of aptamers as tools in analytical chemistry is on the rise due to the development of the "systematic evolution of ligands by exponential enrichment" (SELEX) procedure. This technique allows high-affinity aptamers to be isolated and amplified when starting from a large pool of oligonucleotide sequences. These molecules have been used in flow cytometry, biosensors, affinity probe electrophoresis, capillary electrochromatography, and affinity chromatography. In this paper, we will discuss applications of aptamers which have led to the development of aptamers as chromatographic stationary phases and applications of these stationary phases; and look towards future work which may benefit from the use of aptamers as stationary phases.  相似文献   

17.
Recognition imaging microscopy is an analytical technique used to map the topography and chemical identity of specific protein molecules present in complex biological samples. The technique relies on the use of antibodies tethered to the cantilever tip of an AFM probe to detect cognate antigens deposited onto a mica surface. Despite the power of this technique to resolve single molecules with nanometer-scale spacing, the recognition step remains limited by the availability of suitable quality antibodies. Here we report the in vitro selection and recognition imaging of anti-histone H4 aptamers. In addition to identifying aptamers to highly basic proteins, these results suggest that aptamers provide an efficient, cost-effective route to highly selective affinity reagents for recognition imaging microscopy.  相似文献   

18.
The high pharmaceutical cost and multi-drug resistance in tumor therapeutic agents hinder the further application of chemotherapy in tumor therapy.Artificial modified nucleic acid aptamers have the advantages of high binding affinity,programmability,and easy synthesis.Thus,the rational design of artificial modified aptamers is expected to provide a versatile platform for the optimization of chemotherapy agents.In this review,we summarize the modification strategies and the application of the artificial modified nucleotide-containing aptamers,aiming to provide a promising step toward aptamer-related chemotherapeutic agents.  相似文献   

19.
High‐affinity aptamers for important signal transduction proteins, i.e. Cdc42‐GTP, p21‐activated kinase1 (PAK1) and MRCK (myotonic dystrophy kinase‐related Cdc42‐binding kinase) α were successfully selected in the low micro‐ to nanomolar range using non‐systematic evolution of ligands by exponential enrichment (SELEX) with at least three orders of magnitude enhancement from their respective bulk affinity of naïve DNA library. In the non‐SELEX procedure, CE was used as a highly efficient affinity method to select aptamers for the desired molecular target through a process that involved repetitive steps of partitioning, known as non‐equilibrium CE of equilibrium mixtures with no PCR amplification between successive steps. Various non‐SELEX conditions including the type, concentration and pH of the run buffer were optimized. Other considerations such as salt composition of selection buffer, protein concentration and sample injection size were also studied for high stringency during selection. After identifying the best enriched aptamer pool, randomly selected clones from the aptamer pool were sequenced to obtain the individual DNA sequences. The dissociation constants (Kd) of these sequences were in the low micromolar to nanomolar range, indicating high affinity to the respective proteins. The best binders were also subjected to sequence alignment to generate a phylogenetic tree. No significant consensus region based on approximately 50 sequences for each protein was observed, suggesting the high efficiency of non‐SELEX for the selection of numerous unique sequences with high selectivity.  相似文献   

20.
采用指数富集配基的系统进化(SELEX)技术从随机寡核苷酸文库中筛选获得特异识别蓖麻毒素靶分子的适配子. 将毛细管电泳技术作为分离手段引入到SELEX筛选中, 利用毛细管电泳高效的分离能力使得筛选周期大大缩短. 酶联免疫和斑点杂交实验结果表明, 仅经4轮筛选即可获得特异识别蓖麻毒素蛋白的寡核苷酸适配子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号