首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We demonstrate the detection and characterization of ligand binding to viruses via NMR. To illustrate the methodology, the interaction of an antiviral compound with human rhinovirus serotype 2 (HRV2) was investigated. Specific interaction of a capsid-binding inhibitor and native HRV2 was monitored utilizing saturation transfer difference (STD) NMR. STD NMR experiments at atomic resolution allowed those regions of the ligand that are involved in the interaction with the virus to be determined. The approach allows for (i) the fast and robust assessment of binding, (ii) the determination of the ligand binding epitope at atomic resolution without the necessity to crystallize virus-ligand complexes, and (iii) the reuse of the virus in subsequent assays. This methodology enables one to easily identify binding of drugs, peptides, and receptor or antibody fragments to the viral capsid.  相似文献   

2.
We report enhancement in the fluorescent signal of the carbocyanine dye Cy5 by using an engineered virus as a scaffold to attach >40 Cy5 reporter molecules at fixed locations on the viral capsid. Although cyanine dye loading is often accompanied by fluorescence quenching, our results demonstrate that organized spatial distribution of Cy5 reporter molecules on the capsid obviates this commonly encountered problem. In addition, we observe energy transfer from the virus to adducted dye molecules, resulting in a highly fluorescent viral nanoparticle. We have used this enhanced fluorescence for the detection of DNA-DNA hybridization. When compared with the most often used detection methods in a microarray-based genotyping assay for Vibrio cholerae O139, these viral nanoparticles markedly increased assay sensitivity, thus demonstrating their applicability for existing DNA microarray protocols.  相似文献   

3.
Kremser L  Bilek G  Kenndler E 《Electrophoresis》2007,28(20):3684-3690
The different electrophoretic behavior of the members of two groups of proteins with respect to the absence or presence of detergent additives in the BGE was explored. Recombinant soluble concatemers of repeat 3 of the very low density lipoprotein (VLDL)-receptor fused at their N-terminus to maltose-binding protein (MBP) exhibited different electrophoretic mobilities in borate buffer (pH 8.3) in the absence and in the presence of dodecyl-PEG ether (D-PEG). This enabled the separation of the receptor fragments from MBP after enzymatic cleavage. In the presence of SDS, the mobilities of all proteins approached the same values with increase in detergent concentrations. In contrast, viral capsid proteins of a human rhinovirus (HRV) exhibited different migration in the presence of the additive. For the receptor proteins, extreme apparent high plate numbers were observed when the SDS concentration in the sample and the separation buffer differed. This effect might be erroneously interpreted as a high efficiency. However, it is due to the conductivity boundaries caused by the sample and leads to a total loss of separation.  相似文献   

4.
Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents.  相似文献   

5.
The mechanism of the release of viral RNA from the capsid under the conditions that model this process in cell endosomes upon the virus infection is studied by atomic force microscopy using the human common cold virus (HRV 2 rhinovirus) as an example. Characteristic images of the RNA-protein complex resulted from the release of nucleic acid from virus at pH 4.8–6.0 are presented. It is revealed that, upon its release, RNA undergoes a number of conformational transformations in free form or in a complex with viral protein.  相似文献   

6.
7.
We investigated the potential of small peptide segments to function as broad-spectrum antiviral drug leads. We extracted the α-helical peptide segments that share common secondary-structure environments in the capsid protein-protein interfaces of three unrelated virus classes (PRD1-like, HK97-like, and BTV-like) that encompass different levels of pathogenicity to humans, animals, and plants. The potential for the binding of these peptides to the individual capsid proteins was then investigated using blind docking simulations. Most of the extracted α-helical peptides were found to interact favorably with one or more of the protein-protein interfaces within the capsid in all three classes of virus. Moreover, binding of these peptides to the interface regions was found to block one or more of the putative "hot spot" regions on the protein interface, thereby providing the potential to disrupt virus capsid assembly via competitive interaction with other capsid proteins. In particular, binding of the GDFNALSN peptide was found to block interface "hot spot" regions in most of the viruses, providing a potential lead for broad-spectrum antiviral drug therapy.  相似文献   

8.
In vivo, the icosahedral capsid of human rhinoviruses undergoes well-defined transitions during the infection pathway. Native virus, sedimenting at 150S, is converted to subviral particles with a sedimentation coefficient of 135S, which have lost the innermost capsid protein VP4. Upon release of the genomic RNA empty 80S capsids remain. Similar structural modifications are observed in vitro upon exposure to low pH and/or elevated temperature. Virions are stabilized against these transitions by various antiviral compounds, which bind to a hydrophobic pocket in the capsid protein VP1. Using capillary electrophoresis the kinetics of viral decay in the presence of such hydrophobic drugs was investigated. Assuming first-order kinetics, the increase of the time constant reflects the extent of stabilization. Exposure of the virions to 55 degrees C after presaturation with the antivirals increased the time constants (as compared to native virus) by a factor of 8-30, from a few minutes to several ten minutes. Denaturation of the stabilized capsid gave rise to heterogeneous material rather than to defined subviral particles. This was confirmed by electron microscopy and indicates that the structural modification of the virus follows a kinetically well-defined pathway which is disturbed by the drugs resulting in disorganized disruption of the virion.  相似文献   

9.
Host cell entry by influenza and other enveloped viruses is well characterized, however, the manner in which non-enveloped viruses deliver their genome across host cell membranes in the absence of membrane fusion remains unresolved. The discovery of short, membrane altering, amphipathic or hydrophobic sequences in several non-enveloped virus capsid proteins such as the gamma (gamma) peptide of nodaviruses and tetraviruses, VP4 and the N-terminal region of VP1 of picornaviruses, micro1N of reoviruses, and protein VI of adenoviruses suggests that these small peptides facilitate breaching of the host membrane and the delivery of the viral genome into the host cell. In spite of conspicuous differences in entry among non-enveloped virions, the short stretches of membrane active regions are associated with similar, entry-related events including: I) proteolytic cleavage of a precursor capsid protein resulting in increased dynamic character and/or accessibility of these peptides; II) structural changes in the virus capsid triggered by receptor binding and/or low pH in entry compartments, resulting in peptide exposure; III) externalized peptides interact with host membranes and disrupt them, facilitating delivery of the viral genome inside the host cell. Here we discuss the membrane alteration activity in non-enveloped viruses with reference to the gamma peptide of nodaviruses. Virtually all of the characteristics of gamma are shared by analogous peptides in other non-enveloped viruses, making it a simple prototype for comparative purposes.  相似文献   

10.
In this study, Leishmania RNA virus 1-4 (LRV1-4) particles purified from host Leishmania guyanensis promastigotes were examined for capsid endoribonuclease. Temperature optimum for the endoribonuclease activity was found to be at 37(O)C to 42(O)C and the activity was specifically inhibited by the aminoglycoside antibiotics, neomycin, kanamycin, and hygromycin and by 100 mM levels of NaCl or KCl. To determine the catalytic domain of the capsid endoribonuclease activity, three point-mutation at cysteine residues at C47S (P1), C128/ 133S (P2), and C194R (P3) were prepared and each gene was constructed into baculoviruses and expressed in Sf9 insect cells. LRV1-4 capsid N- terminus (N2 and N3) and C-terminus (C1 and C2) deletion mutants (Cadd et al., 1994) were also examined by in vitro RNA cleavage assay. The results showed that the capsid mutants; C1, C2, N3, P1, and P2 were capable of forming proper virus-like particles (VLPs) and they all possessed the specific endoribonuclease activity. However, two assembly-defective capsid mutants, N2 (N- terminus 24-amino acids deletion) and P3 mutants, did not retain the specific endoribonuclease activity. Taken together, the results suggest that at least 24 amino acids from the N-terminal region and C194 residue in LRV1-4 capsid protein are functionally important for LRV1-4 viral assembly and the capsid endoribonuclease activity may be dependent upon the properly assembled LRV1-4 virus particles.  相似文献   

11.
Hepatitis E is an enterically transmitted viral disease caused by infection with hepatitis E virus(HEV).HEV is a nonenveloped virus that has been classified in the family of Caliciviridae.The virus appears to be a polyadenylated,positive-stranded RNA virus with three major open reading frames(ORFs).The capsid protein of HEV is encoded by the open reading frame 2(ORF2).We attempted to produce a truncated capsid protein,designed p293,in Pichia pastoris.The p293 gene encoding amino acids(aa) 382-674 of HEV ORF2 was designed based on the full length of HEV ORF2,cloned into the yeast vector pPIC9K,and expressed in P.pastoris strain GS115.SDS-PAGE and Western blotting demonstrated that the recombinant protein p293 could well be expressed in P.pastoris.Under optimized conditions (culture medium pH,6.0―6.5;methanol concentration added daily,3.0%;inoculum density,OD600=60;induction time point,72―96h),the yield of soluble p293 was approximately 80 mg/L.We also observed p293 secretory expressed in P.pastoris to be 30 nm viral like particles by using electron microscopy.These results show that the p293 may has utility in the analysis of cell specific factors in the protein processing and assembly of HEV,and serve as a useful antigen for both diagnostic and vaccine purposes.  相似文献   

12.
Kremser L  Petsch M  Blaas D  Kenndler E 《Electrophoresis》2006,27(5-6):1112-1121
The electrophoretic properties of two human rhinovirus (HRV) serotypes, HRV2 and HRV14, their subviral particles, and their capsid proteins were investigated by CE using borate buffer, pH 8.3, as BGE and three different detergents as additives. In addition, the influence of modification of the capsid with an amine reactive fluorescent dye, Cy3.5, on migration in the electric field was assessed. We found that the reproducibility of the electrophoretic results was decisively dependent on the presence of the detergents above their respective CMC. As compared to the strong ionic detergent SDS, the nonionic, mild detergent dodecylpoly(ethyleneglycol ether) (D-PEG) efficiently and reproducibly resolved both, native viruses as well as subviral particles. Most of the analytes behaved as expected except native HRV2; this serotype showed a dramatically higher anionic mobility in SDS than in D-PEG. Additionally, its mobility decreased when each positive charge contributed from a lysine at the capsid surface was substituted by four negative charges upon derivatization with Cy3.5. We discuss the possibility that this effect is caused by differences in number and in arrangement of exposed lysines in the two serotypes leading to differences in the amount of bound SDS micelles.  相似文献   

13.
During infection, enteroviruses, such as human rhinoviruses (HRVs), convert from the native, infective form with a sedimentation coefficient of 150S to empty subviral particles sedimenting at 80S (B particles). B particles lack viral capsid protein 4 (VP4) and the single-stranded RNA genome. On the way to this end stage, a metastable intermediate particle is observed in the cell early after infection. This subviral A particle still contains the RNA but lacks VP4 and sediments at 135S. Native (150S) HRV serotype 2 (HRV2) as well as its empty (80S) capsid have been well characterized by capillary electrophoresis. In the present paper, we demonstrate separation of at least two forms of subviral A particles on the midway between native virions and empty 80S capsids by CE. For one of these intermediates, we established a reproducible way for its preparation and characterized this particle in terms of its electrophoretic mobility and its appearance in transmission electron microscopy (TEM). Furthermore, the conversion of this intermediate to 80S particles was investigated. Gas-phase electrophoretic mobility molecular analysis (GEMMA) yielded additional insights into sample composition. More data on particle characterization including its protein composition and RNA content (for unambiguous identification of the detected intermediate as subviral A particle) will be presented in the second part of the publication.  相似文献   

14.
Hepatitis B virus (HBV) is a major causative agent of human hepatitis. Its viral genome comprises partially double-stranded DNA, which is complexed with viral polymerase within an icosahedral capsid consisting of a dimeric core protein. Here, we describe the effects of capsid assembly modulators (CAMs) on the geometric or kinetic disruption of capsid construction and the virus life cycle. We highlight classical, early-generation CAMs such as heteroaryldihydropyrimidines, phenylpropenamides or sulfamoylbenzamides, and focus on the chemical structure and antiviral efficacy of recently identified non-classical CAMs, which consist of carboxamides, aryl ureas, bithiazoles, hydrazones, benzylpyridazinones, pyrimidines, quinolines, dyes, and antimicrobial compounds. We summarize the therapeutic efficacy of four representative classical compounds with data from clinical phase 1 studies in chronic HBV patients. Most of these compounds are in phase 2 trials, either as monotherapy or in combination with approved nucleos(t)ides drugs or other immunostimulatory molecules. As followers of the early CAMs, the therapeutic efficacy of several non-classical CAMs has been evaluated in humanized mouse models of HBV infection. It is expected that these next-generation HBV CAMs will be promising candidates for a series of extended human clinical trials.  相似文献   

15.
Gold particles with diameters between 2.5 and 4.5 nm have been introduced in the inner cavity of an icosahedral brome mosaic virus. The optical properties of single gold-marked virions have been tested in-vitro with respect to the characteristic plasmon polariton resonance. The shift in the plasmon polariton resonance of a single Au particle encapsulated in a virus with respect to a free particle in solution indicates a close interaction between the basic residues on the inner wall of the capsid and the negative surface charge of the particle. Incorporation of a pair of Au particles, approximately 4 nm diameter, is shown to be a frequent event. In this case, the dependence of the two-particle surface plasmon spectrum on the interparticle distance and the strong particle/capsid wall interaction suggest that, in the future, it will be possible to use encapsulated Au particles to track changes in the viral capsid volume in real-time and in a physiological environment.  相似文献   

16.
The cost-effective detection of viral particles in bodily fluids could enable more effective responses to viral outbreaks, whether isolated clinical cases, or influenza epidemics. In renal transplant recipients, complications arising from high levels of BK virus can lead to graft dysfunction, graft loss, and/or reduced patient survival. We describe a microfluidic system for the sensitive analysis of BK virus (viral load) in unprocessed urine samples that are applied directly onto the chip, thus avoiding labor-intensive processing and sources of inter-assay variability. Integration of small volume genetic amplification (PCR) and electrophoretic analysis detects as few as 1-2 viral copies, distinguishes between high, medium and low levels of virus and reliably identifies viral loads requiring clinical intervention. As a first step to wider application in the clinic and in the field, the present work presents an entirely microchip-based system, validated against conventional clinical methods using clinical samples.  相似文献   

17.
The thymidine analogue 4-thiothymidine (s4T) strongly absorbs light at wavelengths in the UVA range (Λmax 335 nm) and we have examined the photoinactivation of vaccinia and herpes simplex viruses grown in the presence of this nucleoside. The cells used in this study (Vero, mouse 1D-TK+) were able to grow at the same rate when cultured in the presence of 2 mM s4T or 2 mM thymidine, albeit at a slower rate than control cells. Consistent with this finding, viruses grown in the presence of1–4 mM s4T were obtained in reduced yield but retained full infectivity. Both viruses were specifically inactivated by irradiation with 365 nm light and their photosensitivity, as measured by the initial slope of the inactivation curve, increased in parallel with the concentration of s4T added to the culture medium. More than 90% of vaccinia virus grown in the presence of 4 mM s4T was inactivated. Organomercurial agarose chromatography of sheared DNA isolated from vaccinia virus grown in the presence of 2 mM s4T showed that approximately 2.5% of DNA fragments were specifically retained, as compared to 0.2% for control DNA. This value corresponds to at least one s4T residue incorporated per 30 000 nucleotides of vaccinia virus DNA. In fact, it is likely that this ratio is actually approximately 10 times higher because of the incomplete retention of control thiolated oligodeoxynucleotides. The incorporation of s4T into vaccinia virus DNA was required for photoinactivation as (1) the expression of a viral or cellular thymidine kinase was required to confer photosensitivity, and (2) virus plaque reduction assays revealed that maximal photosensitivity coincided with the first rounds of viral DNA replication. The photo-inactivated virus was unable to induce detectable synthesis of several early proteins after infection of cells. These data show that s4T is incorporated into the DNA of vaccinia virus grown in the presence of the analogue and then behaves as a built-in UVA light photosensitizer.  相似文献   

18.
Filamentous viruses such as fd and M13 are highly charged rodlike polyelectrolytes. In this study, we employ fd virus to test the recent prediction of charge inversion [Nguyen, Rouzina, and Shklovskii, J. Chem. Phys. 112, 2562 (2000)]. Light scattering measurements show bundle formation and resolubilization of fd viruses when MgCl(2) was added from 0 to 600 mM. The effective charge of fd was studied by measuring their electrophoretic mobility using a filament tracking method uniquely suited for the system. Monte Carlo simulations were performed under canonical ensemble to predict the charge distribution around the rodlike virus. Charge inversion, which has been suggested theoretically to accompany with bundle resolubilization, was not observed in either experiments or simulations. A modified analysis of force balance is called upon to account for these new findings.  相似文献   

19.
Poly(dimethylsiloxane) (PDMS) membrane valves were utilized for diaphragm pumping on a PDMS-glass hybrid microdevice in order to couple infrared-mediated DNA amplification with electrophoretic separation of the products in a single device. Specific amplification products created during non-contact, infrared (IR) mediated polymerase chain reaction (PCR) were injected via chip-based diaphragm pumping into an electrophoretic separation channel. Channel dimensions were designed for injection plug shaping via preferential flow paths, which aided in minimizing the plug widths. Unbiased injection of sample could be achieved in as little as 190 ms, decreasing the time required with electrokinetic injection by two orders of magnitude. Additionally, sample stacking was promoted using laminar or biased-laminar loading to co-inject either water or low ionic strength DNA marker solution along with the PCR-amplified sample. Complete baseline resolution (Res = 2.11) of the 80- and 102-bp fragments of pUC-18 DNA marker solution was achieved, with partially resolved 257- and 267-bp fragments (Res = 0.56), in a separation channel having an effective length of only 3.0 cm. This resolution was deemed adequate for many PCR amplicon separations, with the added advantage of short separation time-typically complete in <120 s. Decreasing the amount of glass surrounding the PCR chamber reduced the DNA amplification time, yielding a further enhancement in analysis speed, with heating and cooling rates as high as 13.4 and -6.4 degrees C s(-1), respectively. With the time requirements greatly reduced for each step, it was possible to seamlessly couple IR-mediated amplification, sample injection, and separation/detection of a 278-bp fragment from the invA gene of <1000 starting copies of Salmonella typhimurium DNA in approximately 12 min on a single device, representing the fastest PCR-ME integration achieved to date.  相似文献   

20.
Approximately every 100 years, as witnessed in the last two centuries, we are facing an influenza pandemic, necessitating the need to combat a novel virus strain. As a result of the new coronavirus (severe acute respiratory syndrome coronavirus type 2 [SARS-CoV-2] outbreak in January 2020, many clinical studies are being carried out with the aim of combating or eradicating the disease altogether. However, so far, developing coronavirus disease 2019 (COVID-19) detection kits or vaccines has remained elusive. In this regard, the development of antiviral nanomaterials by surface engineering with enhanced specificity might prove valuable to combat this novel virus. Quantum dots (QDs) are multifaceted agents with the ability to fight against/inhibit the activity of COVID-19 virus. This article exclusively discusses the potential role of QDs as biosensors and antiviral agents for attenuation of viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号