首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The effect of the oxygen transfer coefficient on the production of xylitol by biocon version of xylose present in sugarcane bagasse hemicellulosic hydrolysate using the yeast Candiada guilliermondii was investigated. Continuous cultivation was carried out in a 1.25-L fermentor at 30°C, pH 5.5, 300 rpm, and a dilution rate of 0.03/h, using oxygen transfer coefficients of 10,20, and 30/h. The results showed that the microbial xylitol production (11 g/L) increased by 108% with the decrease in the oxygen volumetric transfer coefficient from 30 to 20/h. The maximum values of xylitol productivity (0.7g/[L…h]) and yield (0.58 g/g) were obtained at k L a 20/h.  相似文献   

2.
The conversion of glucose and fructose into gluconic acid (GA) and sorbitol (SOR) was conducted in a batch reactor with free (CTAB-treated or not) or immobilized cells of Zymomonas mobilis. High yields (more than 90%) of gluconic acid and sorbitol were attained at initial substrate concentration of 600 g/L (glucose plus fructose at 1:1 ratio), using cells with glucose-fructose-oxidoreductase activity of 75 U/L. The concentration of the products varied hyperbolically with time according to the equations (GA)=t(GA)max/(WGA +t), (SOR)=t (SOR)max/(WSor+t), vGA=[WGA (GA)max]/(WGA+t)2 and VSOR=[WSOR (SOR)max]/(WSOR+t)2. Taking the test carried out with free CTAB-treated cells as an example, the constant parameters were (GA)max= 541 g/L, (SOR)max=552 g/L, WGA=4.8h, WSOR=4.9h, υGA=112.7 g/L· and υSOR=112.7 g/L·.  相似文献   

3.
The optimum fermentation medium for the production of bacterial cellulose (BC) by a newly isolated Gluconacetobacter sp. RKY5 was investigated. The optimized medium composition for cellulose production was determined to be 15 g/L glycerol, 8 g/L yeast extract, 3 g/L K2HPO4, and 3 g/L acetic acid. Under these optimized culture medium, Gluconacetobacter sp. RKY5 produced 5.63 g/L of BC after 144 h of shaken culture, although 4.59 g/L of BC was produced after 144 h of static culture. The amount of BC produced by Gluconacetobacter sp. RKY5 was more than 2 times in the optimized medium found in this study than in a standard Hestrin and Shramm medium, which was generally used for the cultivation of BC-producing organisms.  相似文献   

4.
Sugarcane bagasse, an agricultural residue plentiful in Brazil, was utilized for xylitol production by a biotechnological process. Am edium fermentation prepared with this xylose-rich biomass at an oxygen transfer volmetric coefficient of 10/h1 and different initial pH value was inoculated with cells of Candida guilliermondii FTI 20037. The maximum values of xylitol and cell volumetric productivities (Q p=0.56 g/[L·h] and Q p=0.11 g/[g·h]), xylitol yield factor (Y p/s=0.79 g/g), and xylose uptake rate (qs=0.197 g/[g·h]) wereattained atp H 7.0 without further pH control. The results show that the yeast performance was influeced by the pH, an im portant bioengineering prameter in this fermentation process.  相似文献   

5.
A new acetic acid-producing microorganism, Acetobacter sp. RKY4, was isolated from Korean traditional persimmon vinegar, and we optimized the culture medium for acetic acid production from ethanol using the newly isolated Acetobacter sp. RKY4. The optimized culture medium for acetic acid production using this microorganism was found to be 40 g/L ethanol, 10 g/L glycerol, 10 g/L corn steep liquor, 0.5 g/L MgSO4·7H2O, and 1.0 g/L (NH4H2PO4. Acetobacter sp. RKY4 produced 47.1 g/L of acetic acid after 48 h of fermentation in a 250 mL Erlenmeyer flask containing 50 mL of the optimized medium.  相似文献   

6.
We synthesized two molecular systems, in which an endofullerene C60, incarcerating one hydrogen molecule (H2@C60) and a nitroxide radical are connected by a folded 310‐helical peptide. The difference between the two molecules is the direction of the peptide orientation. The nuclear spin relaxation rates and the para → ortho conversion rate of the incarcerated hydrogen molecule were determined by 1H NMR spectroscopy. The experimental results were analyzed using DFT‐optimized molecular models. The relaxation rates and the conversion rates of the two peptides fall in the expected distance range. One of the two peptides is particularly rigid and thus ideal to keep the H2@C60/nitroxide separation, r, as large and controlled as possible, which results in particularly low relaxation and conversion rates. Despite the very similar optimized distance, however, the rates measured with the other peptide are considerably higher and thus are compatible with a shorter effective distance. The results strengthen the outcome of previous investigations that while the para → ortho conversion rates satisfactorily obey the Wigner's theory, the nuclear spin relaxation rates are in excellent agreement with the Solomon–Bloembergen equation predicting a 1/r6 dependence.  相似文献   

7.
Iogen (Canada) is a major manufacturer of industrial cellulase and hemicellulase enzymes for the textile, pulp and paper, and poultry feed industries. Iogen has recently constructed a 40 t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. The integration of enzyme and ethanol plants results in significant reduction in production costs and offers an alternative use for the sugars generated during biomass conversion. Iogen has partnered with the University of Toronto to test the fermentation performance characteristics of metabolically engineered Zymomonas mobilis created at the National Renewable Energy Laboratory. This study focused on strain AX101, a xylose- and arabinose-fermenting stable genomic integrant that lacks the selection marker gene for antibiotic resistance. The “Iogen Process” for biomass depolymerization consists of a dilute-sulpfuric acid-catalyzed steam explosion, followed by enzymatic hydrolysis. This work examined two process design options for fermentation, first, continuous cofermentation of C5 and C6 sugars by Zm AX101, and second, separate continuous fermentations of prehydrolysate by Zm AX101 and cellulose hydrolysate by either wildtype Z. mobilis ZM4 or an industrial yeast commonly used in the production of fuel ethanol from corn. Iogen uses a proprietary process for conditioning the prehydrolysate to reduce the level of inhibitory acetic acid to at least 2.5 g/L. The pH was controlled at 5.5 and 5.0 for Zymomonas and yeast fermentations, respectively. Neither 2.5 g/L of acetic acid nor the presence of pentose sugars (C6:C5 = 2:1) appreciably affected the high-performance glucose fermentation of wild-type Z. mobilis ZM4. By contrast, 2.5 g/L of acetic acid significantly reduced the rate of pentose fermentation by strain AX101. For single-stage continuous fermentation of pure sugar synthetic cellulose hydrolysate (60 g/L of glucose), wild-type Zymomonas exhibited a four-fold higher volumetric productivity compared with industrial yeast. Low levels of acetic acid stimulated yeast ethanol productivity. The glucose-to-ethanol conversion efficiency for Zm and yeast was 96 and 84%, respectively.  相似文献   

8.
Candida pseudotropicalis ATCC 8619 was selected among nine strains of lactose fermenting yeast for the production of ethanol from cheese whey. The effects of three nutrients (ammonium sulfate (NH4)2SO4, dipotassium hydrogen phosphate K2HPO4, yeast extract, and a combination of them) on the ethanol yield from cheese whey were investigated. The results indicated that no addition of nutrient supplement is necessary to achieve complete lactose utilization during the cheese whey ethanol fermentation. However, addition of a small concentration (0.005% w/v) of these supplements reduced the lag period and the total fermentation time and increased the specific growth rate of the yeast. Higher concentrations (0.01 and 0.015% w/v) of ammonium sulfate and dipotassium hydrogen phosphate inhibited the cell growth and reduced lactose consumption. The highest ethanol (21.17 g/L) was achieved using yeast extract at a concentration of 0.01% w/v, given a conversion efficiency of 98.3%. No indication of alcohol inhibition was observed in this study.  相似文献   

9.
A simple and rapid HPLC–MS/MS method was developed and validated for simultaneous measurement of phosphocreatine and its metabolites creatine and creatinine in children's plasma. A 50 μL aliquot of plasma was prepared by protein precipitation with acetonitrile–water (1000 μL, 1:1, v/v) followed by separation on a Hypersil Gold C18 column (35°C) with gradient mobile phase consisting of 2 mm ammonium acetate aqueous solution (pH 10) and methanol at a flow rate of 0.3 mL/min and analyzed by mass spectrometry in both positive (phosphocreatine) and negative (creatine and creatinine) ion multiple reaction monitoring mode. Good linearity (r > 0.99) was obtained for the three analytes. The intra‐day and inter‐day values of CV were <5.46% (?13.09% ≤ RE ≤ 2.57%). The average recoveries of the three analytes were 70.9–97.5%. No obvious impact was found for the quantitation of three analytes in normal, hemolyzed and hyperlipemic plasma. In the end, this method was successfully applied to a pharmacokinetic study of phosphocreatine in children (six cases) with viral myocarditis of children after intravenous infusion of 2 g of the test drug. The pharmacokinetc parameters of phosphocreatine/creatine were as follows: t1/2 0.24/0.83 h, Tmax 0.49/0.55 h, Cmax 47.34/59.29 μg/mL, AUClast 17.07/59.63 h μg/mL, AUCinf 17.16/79.01 h μg/mL and MRT 0.29/0.67 h.  相似文献   

10.
Wheat straw is one of the main agricultural residues of interest for bioethanol production. This work examines conversion of steam-pretreated wheat straw (using SO2 as a catalyst) in a hybrid process consisting of a short enzymatic prehydrolysis step and a subsequent simultaneous saccharification and fermentation (SSF) step with a xylose-fermenting strain of Saccharomyces cerevisiae. A successful process requires a balanced design of reaction time and temperature in the prehydrolysis step and yeast inoculum size and temperature in the SSF step. The pretreated material obtained after steam pretreatment at 210 °C for 5 min using 2.5 % SO2 (based on moisture content) showed a very good enzymatic digestibility at 45 °C but clearly lower at 30 °C. Furthermore, the pretreatment liquid was found to be rather inhibitory to the yeast, partly due to a furfural content of more than 3 g/L. The effect of varying the yeast inoculum size in this medium was assessed, and at a yeast inoculum size of 4 g/L, a complete conversion of glucose and a 90 % conversion of xylose were obtained within 50 h. An ethanol yield (based on the glucan and xylan in the pretreated material) of 0.39 g/g was achieved for a process with this yeast inoculum size in a hybrid process (10 % water-insoluble solid (WIS)) with 4 h prehydrolysis time and a total process time of 96 h. The obtained xylose conversion was 95 %. A longer prehydrolysis time or a lower yeast inoculum size resulted in incomplete xylose conversion.  相似文献   

11.
Jahangiri  Shima  Hatami  Mehdi  Farhadi  Khalil  Bahram  Morteza 《Chromatographia》2013,76(11):663-669

A sensitive and simple method based on two-phase liquid-phase microextraction in porous hollow fiber followed by gas chromatography-flame ionization detection was developed for quantification and pharmacokinetic study of valproic acid (VPA, an antiepileptic drug) in rat plasma after oral administration of pure sodium valproate (25 mg kg−1). Some parameters such as type of organic solvent, pH of sample solution, stirring speed, salt addition, extraction time, and volume of sample that affected extraction efficiency of VPA were optimized. Under optimized microextraction conditions, VPA was extracted with 10 μL 1-octanol from 0.5 mL rat plasma previously diluted with 4.5 mL acidified and salinated water (pH 2) using 1-octanoic acid as internal standard. The limit of detection was 17 ng mL−1 with linear response over the concentration range of 50–10,000 ng mL−1 with correlation coefficient higher than 0.998. The developed method was successfully applied to determination of pharmacokinetic parameters such as t max (peak time in concentration–time profile), C max (peak concentration in concentration–time profile), t 1/2 (elimination half-life), AUC0–t (area under the curve for concentration versus time), clearance, and apparent distribution volume in rats following oral administration of VPA.

  相似文献   

12.
The effect of glucose on xylose-xylitol metabolism in fermentation medium consisting of sugarcane bagasse hydrolysate was evaluated by employing an inoculum of Candida guilliermondii grown in synthetic media containing, as carbon sources, glucose (30 g/L), xylose (30 g/L), or a mixture of glucose (2 g/L) and xylose (30 g/L). The inoculum medium containing glucose promoted a 2.5-fold increase in xylose reductase activity (0.582 IU/mgprot) and a 2-fold increase in xylitol dehydrogenase activity (0.203 IU/mgprot) when compared with an inoculum-grown medium containing only xylose. The improvement in enzyme activities resulted in higher values of xylitol yield (0.56 g/g) and productivity (0.46 g/[L·h]) after 48 h of fermentation.  相似文献   

13.
Recently, sugar polymers have been considered for use as biomaterials in medical applications. These biomaterials are already used extensively in burn dressings, artificial membranes, and contact lenses. In this study, we investigated the optimum conditions under which the enzymatic synthesis of sorbitan methacrylate can be affected using Novozym 435 in t-butanol from sorbitan and several acyl donors (ethyl methacrylate, methyl methacrylate, and vinyl methacrylate). The enzymatic synthesis of sorbitan methacrylate, catalyzed by Novozym 435 in t-butanol, reached an approx 68% conversion yield at 50 g/L of 1,4-sorbitan, 5% (w/v) of enzyme content, and a 1∶5 molar ratio of sorbitan to ethyl methacrylate, with a reaction time of 36 h. Using methyl methacrylate as the acyl donor, we achieved a conversion yield of approx 78% at 50 g/L of 1,4-sorbitan, 7% (w/v) of enzyme content, at a 1∶5 molar ratio, with a reaction time of 36 h. Sorbitan methacrylate synthesis using vinyl methacrylate as the acyl donor was expected to result in a superior conversion yield at 3% (w/v) of enzyme content, and at a molar ratio greater than 1∶2.5. Higher molar ratios of acyl donor resulted in more rapid conversion rates. Vinyl methacrylate can be applied to obtain higher yields than are realized when using ethyl methacrylate or methyl methacrylate as acyl donors in esterification reactions catalyzed by Novozym 435 in organic solvents. Enzyme recycling resulted in a drastic reduction in conversion yields.  相似文献   

14.
The synthesis of unsymmetrical diphosphine ligands ( 3 a – g ) with an o‐tolyl backbone and tert‐butyl, adamantyl, cyclohexyl and isopropyl substituents on the phosphorus moiety is described (1,2‐(CH2PR2)(PR′2)C6H4; 3 a : R=tBu, R′=tBu, 3 b : R=tBu, R′=Cy, 3 c : R=tBu, R′=iPr, 3 d : R=Ad, R′=tBu, 3 e : R=Ad, R′=Cy, 3 f : R=Cy, R′=Cy, 3 g : R=Ad, R′=Ad). The corresponding diphosphine–PdII ditriflate complexes [(P^P)Pd(OTf)2] ( 5 a – g ) were prepared and structurally characterised by X‐ray crystallography. These new complexes were studied as catalyst precursors in the isomerising methoxycarbonylation of methyl oleate, and were found to convert methyl oleate into the corresponding linear α,ω‐diester ( L ) with 70–80 % selectivity. The products of this catalytic reaction with the known [{1,2‐(tBu2PCH2)2C6H4}Pd(OTf)2] complex ( 5 h ) were fully analysed, and revealed the formation of the linear α,ω‐diester ( L , 89.0 %), the methyl‐branched diester B1 (4.3 %), the ethyl‐branched diester B2 (1.0 %), the propyl‐branched diester B3 (0.6 %) and all diesters from butyl‐ to hexadecyl‐branched diesters B4 – B16 (overall 4.8 %) at 90 °C and 20 bar CO. The productivity of the catalytic conversion of methyl oleate with complexes 5 a – g varied with the steric bulk of the alkyl substituent on the phosphorus. Ligands with more bulky groups, like tert ‐ butyl or adamantyl (e.g., 5 a , 5 d , 5 g ), were more productive systems. The formation of the catalytically active hydride species [(P^P)Pd(H)(MeOH)]+ ( 6‐MeOH ) was investigated and observed directly for complexes 5 a – e and 5 g , respectively. These hydride species were isolated as the corresponding triphenylphosphine complexes ( 6‐PPh3 ) and fully characterised, including by X‐ray crystallography. The catalytic productivity of 6 a‐PPh3 was virtually identical to that of 5 a , thereby confirming the efficient hydride formation of 5 a under catalytic conditions.  相似文献   

15.
Multienzymatic conversion of sucrose into fructose and gluconic acid was studied through fed-batch and continuous (in a membrane reactor) processes. The law of substrate addition (sucrose or glucose) for the fed-batch process which led to a yield superior to 80% was the decreasing linear type, whose feeding rate (?; L/h) was calculated through the equation: ? = ?o ? k.t, where ?o (initial feeding rate, L/h), k (linear addition constant, L/h 2), and t (reaction time, h). In the continuous process, the yield of conversion of sucrose (Y) was superior to 70% under the following conditions: dilution rate?=?0.33 h?1, total duration of 15 h, pH 5.0, 37 °C and initial sucrose concentration of 64 g/L (Y?=?92%), 100 g/L (Y?=?83%), or 150 g/L (Y?=?76%).  相似文献   

16.
Xylose reductase activity of Candida guilliermondii FTI 20037 was evaluated during xylitol production by fed-batch fermentation of sugarcane bagasse hydrolysate. A 24-1 fractional factorial design was used to select process variables. The xylose concentrations in the feeding solution (S F ) and in the fermentor (S 0), the pH, and the aeration rate were selected for optimization of this process, which will be undertaken in the near future. The best experimental result was achieved at S F =45 g/L, S 0=40 g/L, pH controlled at 6.0, and aeration rate of 1.2 vvm. Under these conditions, the xylose reductase activity was 0.81 U/mg of protein and xylitol production was 26.3 g/L, corresponding to a volumetric productivity of 0.55 g/(L·h) and a xylose xylitol yield factor of 0.68 g/g.  相似文献   

17.
A new approach for the utilization of hemicellulosic hydrolysate from sugarcane bagasse is described. This approach consists of using the hydrolysate to dilute the conventional feedstock (sugarcane juice) to the usual sugar concentration (150 g/L) employed for the industrial production of ethanol. The resulting sugar mixture was used as the substrate to evaluate the performance of a continuous reactor incorporating a cell recycle module, operated at several dilution rates. An induced flocculent pentose-fermenting yeast strain was used for this bioconversion. Under the conditions used, the reactor performance was satisfactory at substrate feed rates of 30 g/(L·h) or less, corresponding to an ethanol productivity of about 11.0 g/(L·h) and an overall sugar conversion >95%. These results show real advantages over the existing alternatives for a better exploitation of surplus bagasse to increase industrial alcohol production.  相似文献   

18.
A series of palladium complexes ( 2a–2g ) ( 2a : [6‐tBu‐2‐PPh2‐C6H3O]PdMe(Py); 2b : [6‐C6F5–2‐PPh2‐C6H3O]PdMe(Py); 2c : [6‐tBu‐2‐PPhtBu‐C6H3O]PdMe(Py); 2d : [2‐PPhtBu‐C6H4O] PdMe(Py); 2e : [6‐SiMe3–2‐PPh2‐C6H3O]PdMe(Py); 2f : [2‐tBu‐6‐(Ph2P=O)‐C6H3O]PdMe(Py); 2g : [6‐SiMe3–2‐(Ph2P=O)‐C6H3S]PdMe(Py)) bearing phosphine (oxide)‐(thio) phenolate ligand have been efficiently synthesized and characterized. The solid‐state structures of complexes 2d , 2f and 2g have been further confirmed by single‐crystal X‐ray diffraction, which revealed a square‐planar geometry of palladium center. In the presence of B(C6F5)3, these complexes can be used as catalysts to polymerize norbornene (NB) with relatively high yields, producing vinyl‐addition polymers. Interestingly, 2a /B(C6F5)3 system catalyzed the polymerization of NB in living polymerization manner at high temperature (polydispersity index 1.07, Mn up to 1.5 × 104). The co‐polymerization of NB and polar monomers was also studied using catalysts 2a and 2f . All the obtained co‐polymers could dissolve in common solvent.  相似文献   

19.
The production of l-DOPA using l-tyrosine as substrate, the enzyme tyrosinase (EC 1.14.18.1) as biocatalyst, and l-ascorbate as reducing agent for the o-quinones produced by the enzymatic oxidation of the substrates was studied. Tyrosinase immobilization was investigated on different supports and chemical agents: chitin flakes activated with hexamethylenediamine and glutaraldehyde as crosslinking agent, chitosan gel beads, chitosan gel beads in the presence of glutaraldehyde, chitosan gel beads in the presence of polyvinyl pyrrolidone, and chitosan flakes using glutaraldehyde as crosslinking agent. The last support was considered the best using as performance indexes the following set of immobilization parameters: efficiency (90.52%), yield (11.65%), retention (12.87%), and instability factor (0.00). The conditions of immobilization on chitosan flakes were optimized using a two-level full factorial experimental design. The independent variables were enzyme-support contact time (t), glutaraldehyde concentration (G), and the amount of enzyme units initially offered (U C). The response variable was the total units of enzymatic activity shown by the immobilized enzyme (U IMO). The optimal conditions were t=24 h, G=2% (v/v), and U C=163.7 U. Under these conditions the total units of enzymatic activity shown by the immobilized enzyme (U IMO) was 23.3 U and the rate of l-DOPA production rate was 53.97 mg/(L·h).  相似文献   

20.
The continuous production of ethanol from nonsterilized carob pod extract by immobilizedSaccharomyces cerevisiae on mineral kissiris using one- and two-reactor systems has been investigated. A maximum ethanol productivity of 9.6 g/L/h was obtained at an initial sugar concentration of 200 g/L and D = 0.4 h-1 with 68% of theoretical yield and 34% of sugar utilization using the one-reactor system. AtS 0 = 200 g/L, D = 0.05 h-1, 83% of theoretical yield, and 64% of sugar utilization, an ethanol productivity of 2.6 g/L/h was achieved. In the tworeactor system, a maximum ethanol productivity of 11.4 g/L/h was obtained at S0 = 200 g/L and D = 0.4 h-1 with 68.5% of theoretical yield and 41.5% of sugar utilization. The two-reactor system was operated at a constant dilution rate of 0.3 h-1 for 60 d without loss of the original immobilized yeast activity. In this case, the average ethanol productivity, ethanol yield (% of theoretical), and sugar utilization were 10.7 g/L/h, 71.5%, and 48%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号