首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The quantum-mechanical average-atom model is reviewed and applied to determine scattering phase shifts, mean-free paths, and relaxation times in warm-dense plasmas. Static conductivities σ are based on an average-atom version of the Ziman formula. Applying linear response to the average-atom model leads to an average-atom version of the Kubo–Greenwood formula for the frequency-dependent conductivity σ(ω). The free–free contribution to σ(ω) is found to diverge as 1/ω2 at low frequencies; however, considering effects of multiple scattering leads to a modified version of σ(ω) that is finite and reduces to the Ziman formula at ω = 0. The resulting average-atom version of the Kubo–Greenwood formula satisfies the conductivity sum rule. The dielectric function ε(ω) and the complex index of refraction n(ω) + (ω) are inferred from σ(ω) using dispersion relations. Applications to anomalous dispersion in laser-produced plasmas are discussed.  相似文献   

2.
3.
The formation of shocks in plasmas created by short pulse laser irradiation (λ = 800 nm, I  1 × 1012 W cm?2) of semi-cylindrical cavities of different materials was studied combining visible and soft X-ray laser interferometry with simulations. The plasma rapidly converges near the axis to form a dense bright plasma focus. Later in time a long lasting bow shock is observed to develop outside the cavity, that is shown to arise from the collision of plasmas originating from within the cavity and the surrounding flat walls of the target. The shock is sustained for tens of nanoseconds by the continuous arrival of plasma ablated from the target walls. The plasmas created from the heavier target materials evolve more slowly, resulting in increased shock lifetimes.  相似文献   

4.
We report on a set of experiments in which solid targets of different atomic numbers (Z) were irradiated with laser pulses of time durations ranging from 300 fs to 33 ps, and energies up to 26 J. The time-resolved X-ray emission in the 7.6–8.1 Å spectral range was measured using an ultra-fast X-ray streak camera coupled with a conical Bragg crystal. In this way we were able to follow the dramatic modification of the spectral features as a function of the laser duration. The features evolve from a “ns-type” emission, characterized by narrow and well-defined spectral lines, to very broad spectral features, due not only to the Stark broadening but also to the proliferation of satellites lines. The measured spectra also show strong time dependence, which allows us to follow the time evolution of the hydrodynamic parameters. We then compare the derived parameter with the CHIVAS hydro-radiative simulations. The experimental results are also compared with the AVERROES/TRANSPEC collisional-radiative code, and with precise spectral line shape calculations (PPP and PrismSPECT). The results seem to indicate regimes of interaction where hot electrons play an important role on spectral line formation.  相似文献   

5.
We report on soft X-ray scattering experiments on cryogenic hydrogen and simple metal samples. As a source of intense, ultrashort soft X-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 150 μJ and durations 15–50 fs provide interaction with the sample leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft X-ray inelastic scattering from near-solid density hydrogen plasmas at few electron volt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft X-ray excitation of few electron volt solid-density plasmas in bulk metal samples could be studied by recording soft X-ray line and continuum emission integrated over emission times from fs to ns.  相似文献   

6.
We discuss calculations of synthetic spectra for the interpretation and analysis of K-shell and bound-free emission from argon-doped deuterium-filled OMEGA direct-drive implosion cores. The spectra are computed using a model that considers collisional-radiative atomic kinetics, continuum-lowering, detailed Stark-broadened line shapes, line overlapping, and radiation transport effects. The photon energy range covers the moderately optically thick n = 3  n = 1 and n = 4  n = 1 line transitions in He- and H-like Ar, their associated satellite lines in Li- and He-like Ar, and several radiative recombination edges. At the high-densities characteristic of implosion cores, the radiative recombination edges substantially shift to lower energies thus overlapping with several line transitions. We discuss the application of the spectra to spectroscopic analysis of doped implosion cores.  相似文献   

7.
The present work explores unusual flow behavior of entangled fluids in an abrupt contraction flow device. Fluorescent imaging was carried out on four different entangled DNA solutions with concentrations ranging from 0.1 to 1.0% (with a wide range of entanglements per chain Z = 7–55). For weakly entangled solutions (Z < 30), vortex flow was dominant at high flow rates. However, for well-entangled DNA solutions (Z  30), unusual time dependant shear banding was observed at the contraction entrance. Upon reducing the slip length by adding sucrose to the well-entangled DNA solution, vortex flow became dominant again. In vortex flow, most DNA chains remained coiled at the corner in regular recirculation. However, when jerky-shear-banding flow developed, significant stable stretching of DNA chains occurred at the center-line, with quasi-periodic switching between stretching and recoil at the corner.  相似文献   

8.
We present simulation results of flow-induced crystallization of a dense polymeric liquid subjected to a strong uniaxial elongational flow using a rigorous nonequilibrium Monte Carlo method. A distinct transition between the liquid and the crystalline phases occurred at critical values of flow strength, with an abrupt, discontinuous transition of the overall chain conformation. The flow-induced crystalline phase matched quantitatively the experimental X-ray diffraction data of the real crystals remarkably well, including the sharp Bragg peaks at small wavenumbers, k < 1.5 Å?1, indicating the existence of a global long-range ordering. We also found that the enthalpy change (ΔH = 225 J/g) during the phase transition was quantitatively very similar to the experimental heat of fusion (276 J/g) of polyethylene crystals under quiescent conditions. Furthermore, a detailed analysis of the configuration-based temperature provided a sound microscopic physical origin for the effective enhancement of the crystallization (or melting) temperature that has been observed in experiments. Simulation results also allow for the deduction of potential nonequilibrium expressions for thermodynamic quantities, such as temperature and heat capacity.  相似文献   

9.
10.
Normal (n)-alkanes and polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were collected from Beijing in 2006 and analyzed using a thermal desorption-GC/MS technique. Annual average concentrations of n-alkanes and PAHs were 282 ± 96 and 125 ± 150 ng/m3, respectively: both were highest in winter and lowest in summer. C19–C25 compounds dominated the n-alkanes while benzo[b]fluoranthene, benzo[e]pyrene, and phenanthrene were the most abundant PAHs. The n-alkanes exhibited moderate correlations with organic carbon (OC) and elemental carbon (EC) throughout the year, but the relationships between the PAHs, OC and EC differed between the heating and non-heating seasons. The health risks associated with PAHs in winter were more than 40 times those in spring and summer even though the PM2.5 loadings were comparable. Carbon preference index values (<1.5) indicated that the n-alkanes were mostly from fossil fuel combustion. The ratios of indeno[123-cd]pyrene to benzo[ghi]pyrelene in summer and spring were 0.58 ± 0.12 and 0.63 ± 0.09, respectively, suggesting that the PAHs mainly originated from motor vehicles, but higher ratios in winter reflected an increased influence from coal, which is extensively burned for domestic heating. A comprehensive comparison showed that PAH pollution in Beijing has decreased in the past 10 years.  相似文献   

11.
Solar cracking of methane is considered to be an attractive option due to its CO2 free hydrogen production process. Carbon particle deposition on the reactor window, walls and exit is a major obstacle to achieve continuous operation of methane cracking solar reactors. As a solution to this problem a novel “aero-shielded solar cyclone reactor” was created. In this present study the prediction of particle deposition at various locations for the aero-shielded reactor is numerically investigated by a Lagrangian particle dispersion model. A detailed three dimensional computational fluid dynamic (CFD) analysis for carbon deposition at the reactor window, walls and exit is presented using a Discrete Phase Model (DPM). The flow field is based on a RNG k–ε model and species transport with methane as the main flow and argon/ hydrogen as window and wall screening fluid. Flow behavior and particle deposition have been observed with the variation of main flow rates from 10–20 L/min and with carbon particle mass flow rate of 7 × 10−6 and 1.75 × 10−5 kg/s. In this study the window and wall screening flow rates have been considered to be 1 L/min and 10 L/min by employing either argon or hydrogen. Also, to study the effect of particle size simulations have also been carried out (i) with a variation of particle diameter with a size distribution of 0.5–234 μm and (ii) by taking 40 μm mono sized particles which is the mean value for the considered size distribution. Results show that by appropriately selecting the above parameters, the concept of the aero-shielded reactor can be an attractive option to resolve the problem of carbon deposition at the window, walls and exit of the reactor.  相似文献   

12.
Results on diagnoses of laser-driven, shock-heated foam plasma with time-resolved Al 1s-2p absorption spectroscopy are reported. Experiments were carried out to produce a platform for the study of relativistic electron transport. In cone-guided Fast Ignition (FI), relativistic electrons generated by a high-intensity, short-pulse igniter beam must be transported through a cone tip to an imploded core. Transport of the energetic electrons could be significantly affected by the temperature-dependent resistivity of background plasmas. The experiment was conducted using four UV beams of the OMEGA EP laser at the Laboratory For Laser Energetics. One UV beam (1.2 kJ, 3.5 ns square) was used to launch a shock wave into a foam package target, consisting of 200 mg/cm3 CH foam with aluminum dopant and a solid plastic container surrounding the foam layer. The other three UV beams with the total energy of 3.2 kJ in 2.5 ns pulse duration were tightly focused onto a Sm dot target to produce a point X-ray source in the energy range of 1.4–1.6 keV. The quasi-continuous X ray signal was transmitted through the shock-heated Al-doped, foam layer and recorded with an X-ray streak camera. The measured 1s-2p Al absorption features were analyzed using an atomic physics code FLYCHK. Electron temperature of 40 eV inferred from the spectral analysis is consistent with 2-D DRACO Radiation-hydrodynamic simulations.  相似文献   

13.
The vaporization characteristics of a liquid hexanes jet in a lab-scale test section with a plain orifice-type injector were experimentally investigated. The experimental measurements were carried out on the basis of the infrared laser extinction method using two He–Ne lasers (one at 632.8 nm and the other at 3.39 μm). The momentum flux ratio (qF/A) was varied from 20 to 60 over 20 steps, and the supplying air temperature (TA) was changed from 20 to 260 °C over 120 steps. The objectives of the current study were to assess the vaporization characteristics of a liquid hexanes jet and to derive a correlation between flow conditions and hexanes vapor concentration in a jet-in-crossflow configuration. From the results of the experimental measurement, it was concluded that hexanes vapor concentration increased with the increase of the momentum flux ratio and the supplying air temperature. An experimental correlation between flow conditions and hexanes vapor concentration (ZF) was proposed as a function of the normalized horizontal distance (x/do), the supplying air temperature (TA), the momentum flux ratio (qF/A), the fuel jet Reynolds number (ReF), and the fuel jet Weber number (WeF).  相似文献   

14.
The transmission of plasma-based soft X-ray lasers through thin targets can be used to measure the target opacity. Measurements of warm dense matter transmission obtained using a focused 59 eV photon energy laser irradiation on thin targets of polyimide (C22H10N2O5) and aluminum are shown to produce simultaneous heating and probing enabling opacity and temperature measurements of warm dense matter. It is shown that the opacity of the warm dense matter considered in the experiments follows closely tabulated cold ‘room temperature’ opacities at temperatures below ~10 eV. Transmission measurements of thin iron targets which are highly opaque to the X-ray laser radiation are also presented.  相似文献   

15.
The impact of the third (skewness) and fourth (kurtosis) reduced centered moments on the statistical modeling of E1 lines in complex atomic spectra is investigated through the use of Gram–Charlier, Normal Inverse Gaussian and Generalized Gaussian distributions. It is shown that the modeling of unresolved transition arrays with non-Gaussian distributions may reveal more detailed structures, due essentially to the large value of the kurtosis. In the present work, focus is put essentially on the Generalized Gaussian, the power of the argument in the exponential being constrained by the kurtosis value. The relevance of the new statistical line distribution is checked by comparisons with smoothed detailed line-by-line calculations and through the analysis of 2p  3d transitions of recent laser or Z-pinch absorption measurements. The issue of calculating high-order moments is also discussed (Racah algebra, Jucys graphical method, semi-empirical approach…).  相似文献   

16.
The existence and behaviour of electro-elastic surface Love waves in a structure consisting of a piezoelectric substrate of crystal classe 6, 4, 6 mm, 4 mm, 622 or 422, an elastic layer and a dielectric medium is considered. The mathematical model obtained includes all the above crystal classes, i.e. the surface wave problems related to all these classes are presented in a single mathematical model. The dispersion equation for the existence of Love surface waves with respect to phase velocity is obtained. A detailed investigation of the electromechanical coupling coefficient is carried out depending on the dielectric and piezoelectric parameters of the problem. Geometrical investigation of the solutions of the dispersion equation is carried out.  相似文献   

17.
Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl, NO3, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p < 0.01, R = 0.95 for wheat straw; p < 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution.  相似文献   

18.
Multi-doped spinels, namely LiMn2O4 and LiZnxHoyMn2−xyO4 (x = 0.10–0.18; y = 0.02–0.10), for use as cathode materials for lithium-ion rechargeable batteries were synthesized via sol–gel method, using lauric acid as the chelating agent, to obtain micron-sized particles. The physical properties of the synthesized samples were investigated using differential thermal analysis, Fourier-transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy, energy-dispersive X-ray analysis, and electrochemical methods. XRD showed that LiMn2O4 and LiZnxHoyMn2−xyO4 have high degrees of crystallinity and good phase purities. The SEM images of LiMn2O4 showed an ice-cube morphology with particles of size 1 μm. Charge–discharge studies showed that undoped LiMn2O4 delivered the discharge capacity of 124 mA h/g with coulombic efficiency of 95% during the first cycle, whereas doped spinels delivered discharge capacities of 125, 120, and 127 mA h/g in the first cycle with coulombic efficiencies of 96%, 91%, and 91%, respectively.  相似文献   

19.
In this paper, we studied the convective heat transfer from a stream-wise oscillating circular cylinder. Two dimensional numerical simulations are conducted at Re = 100–200, A = 0.1–0.4 and F = fo/fs = 0.2–3.0 with the aid of the lattice Boltzmann method. In particular, detailed attentions are paid on the extensive numerical results elucidating the influence of oscillation frequency, oscillation amplitude and Reynolds number on the time-average and RMS value of the Nusselt number. Over the ranges of conditions considered herein, the heat transfer characteristics are observed to be influenced in an intricate manner by the value of the oscillation frequency (F), oscillation amplitude (A) and Reynolds number (Re). Firstly, the heat transfer is enhanced when the cylinder oscillates stream-wise with small amplitude and low frequency, while it will be reduced by large amplitude and high frequency. Secondly, the average Nusselt number (Nu (ave)) decreases against the increasing value of oscillation frequency, while the RMS value of the Nusselt number, Nu (RMS), displays an opposite trend. Third, we obtained a similar frequency effect on the heat transfer over the range of Reynolds numbers investigated in this paper. In addition, detailed analyses on phase portraits, energy spectrum are also made.  相似文献   

20.
We synthesized LiMnPO4/C with an ordered olivine structure by using a microwave-assisted polyol process in 2:15 (v/v) water–diethylene glycol mixed solvents at 130 °C for 30 min. We also studied how three surfactants—hexadecyltrimethylammonium bromide, polyvinylpyrrolidone k30 (PVPk30), and polyvinylpyrrolidone k90 (PVPk90)—affected the structure, morphology, and performance of the prepared samples, characterizing them by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge/discharge tests, and electrochemical impedance spectroscopy. All the samples prepared with or without surfactant had orthorhombic structures with the Pnmb space group. Surfactant molecules may have acted as crystal-face inhibitors to adjust the oriented growth, morphology, and particle size of LiMnPO4. The microwave effects could accelerate the reaction and nucleation rates of LiMnPO4 at a lower reaction temperature. The LiMnPO4/C sample prepared with PVPk30 exhibited a flaky structure coated with a carbon layer (∼2 nm thick), and it delivered a discharge capacity of 126 mAh/g with a capacity retention ratio of ∼99.9% after 50 cycles at 1C. Even at 5C, this sample still had a high discharge capacity of 110 mAh/g, demonstrating good rate performance and cycle performance. The improved performance of LiMnPO4 likely came from its nanoflake structure and the thin carbon layer coating its LiMnPO4 particles. Compared with the conventional polyol method, the microwave-assisted polyol method had a much lower reaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号