首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An apple A k is the graph obtained from a chordless cycle C k of length k ≥ 4 by adding a vertex that has exactly one neighbor on the cycle. The class of apple-free graphs is a common generalization of claw-free graphs and chordal graphs, two classes enjoying many attractive properties, including polynomial-time solvability of the maximum weight independent set problem. Recently, Brandstädt et al. showed that this property extends to the class of apple-free graphs. In the present paper, we study further generalization of this class called graphs without large apples: these are (A k , A k+1, . . .)-free graphs for values of k strictly greater than 4. The complexity of the maximum weight independent set problem is unknown even for k = 5. By exploring the structure of graphs without large apples, we discover a sufficient condition for claw-freeness of such graphs. We show that the condition is satisfied by bounded-degree and apex-minor-free graphs of sufficiently large tree-width. This implies an efficient solution to the maximum weight independent set problem for those graphs without large apples, which either have bounded vertex degree or exclude a fixed apex graph as a minor.  相似文献   

2.
The notion of augmenting graphs generalizes Berge’s idea of augmenting chains, which was used by Edmonds in his celebrated solution of the maximum matching problem. This problem is a special case of the more general maximum independent set (MIS) problem. Recently, the augmenting graph approach has been successfully applied to solve MIS in various other special cases. However, our knowledge of augmenting graphs is still very limited and we do not even know what the minimal infinite classes of augmenting graphs are. In the present paper, we find an answer to this question and apply it to extend the area of polynomial-time solvability of the maximum independent set problem.  相似文献   

3.
A graph G is said to be a set graph if it admits an acyclic orientation which is also extensional, in the sense that the out-neighborhoods of its vertices are pairwise distinct. Equivalently, a set graph is the underlying graph of the digraph representation of a hereditarily finite set.In this paper, we initiate the study of set graphs. On the one hand, we identify several necessary conditions that every set graph must satisfy. On the other hand, we show that set graphs form a rich class of graphs containing all connected claw-free graphs and all graphs with a Hamiltonian path. In the case of claw-free graphs, we provide a polynomial-time algorithm for finding an extensional acyclic orientation. Inspired by manipulations of hereditarily finite sets, we give simple proofs of two well-known results about claw-free graphs. We give a complete characterization of unicyclic set graphs, and point out two NP-complete problems closely related to the problem of recognizing set graphs. Finally, we argue that these three problems are solvable in linear time on graphs of bounded treewidth.  相似文献   

4.
5.
The dominating induced matching problem, also known as efficient edge domination, is the problem of determining whether a graph has an induced matching that dominates every edge of the graph. This problem is known to be NP-complete. We study the computational complexity of the problem in special graph classes. In the present paper, we identify a critical class for this problem (i.e., a class lying on a “boundary” separating difficult instances of the problem from polynomially solvable ones) and derive a number of polynomial-time results. In particular, we develop polynomial-time algorithms to solve the problem for claw-free graphs and convex graphs.  相似文献   

6.
A graph is called t-perfect, if its stable set polytope is defined by non-negativity, edge and odd-cycle inequalities. We characterise the class of all claw-free t-perfect graphs by forbidden t-minors, and show that they are 3-colourable. Moreover, we determine the chromatic number of claw-free h-perfect graphs and give a polynomial-time algorithm to compute an optimal colouring.  相似文献   

7.
A 2-join is an edge cutset that naturally appears in decomposition of several classes of graphs closed under taking induced subgraphs, such as perfect graphs and claw-free graphs. In this paper we construct combinatorial polynomial time algorithms for finding a maximum weighted clique, a maximum weighted stable set and an optimal coloring for a class of perfect graphs decomposable by 2-joins: the class of perfect graphs that do not have a balanced skew partition, a 2-join in the complement, nor a homogeneous pair. The techniques we develop are general enough to be easily applied to finding a maximum weighted stable set for another class of graphs known to be decomposable by 2-joins, namely the class of even-hole-free graphs that do not have a star cutset.We also give a simple class of graphs decomposable by 2-joins into bipartite graphs and line graphs, and for which finding a maximum stable set is NP-hard. This shows that having holes all of the same parity gives essential properties for the use of 2-joins in computing stable sets.  相似文献   

8.
Method of augmenting graphs is a general approach to solve the maximum independent set problem. As the problem is generally NP-hard, no polynomial time algorithms are available to implement the method. However, when restricted to particular classes of graphs, the approach may lead to efficient solutions. A famous example of this type is the maximum matching algorithm: it finds a maximum matching in a graph G, which is equivalent to finding a maximum independent set in the line graph of G. In the particular case of line graphs, the method reduces to finding augmenting (alternating) chains. Recent investigations of more general classes of graphs revealed many more types of augmenting graphs. In the present paper we study the problem of finding augmenting graphs different from chains. To simplify this problem, we introduce the notion of a redundant set. This allows us to reduce the problem to finding some basic augmenting graphs. As a result, we obtain a polynomial time solution to the maximum independent set problem in a class of graphs which extends several previously studied classes including the line graphs.  相似文献   

9.
We first study a generalization of the König-Egervary graphs, the class of the κ-KE graphs, and propose an exact polynomial time algorithm solving maximum independent set problem in this class. Next, we show how this result can be efficiently used to devise polynomial time approximation algorithms with improved approximation ratios for the maximum independent set problem in general graphs.  相似文献   

10.
Mathematical Programming - The maximum weighted stable set problem in claw-free graphs is a well-known generalization of the maximum weighted matching problem, and a classical problem in...  相似文献   

11.
12.
This is a summary of the author’s Ph.D. thesis supervised by Sara Nicoloso and Gianpaolo Oriolo and defended on 3 April 2008 at Sapienza Università di Roma. The thesis is written in English and is available from the author upon request. This work deals with three classical combinatorial problems, namely the isomorphism, the vertex-coloring and the stable set problem, restricted to two graph classes, namely circulant and claw-free graphs. In the first part (joint work with Sara Nicoloso), we derive a necessary and sufficient condition to test isomorphism of circulant graphs, and give simple algorithms to solve the vertex-coloring problem on this class of graphs. In the second part (joint work with Gianpaolo Oriolo and Gautier Stauffer), we propose a new combinatorial algorithm for the maximum weighted stable set problem in claw-free graphs, and devise a robust algorithm for the same problem in the subclass of fuzzy circular interval graphs, which also provides recognition when the stability number is greater than three.  相似文献   

13.
Polar, monopolar, and unipolar graphs are defined in terms of the existence of certain vertex partitions. Although it is polynomial to determine whether a graph is unipolar and to find whenever possible a unipolar partition, the problems of recognizing polar and monopolar graphs are both NP-complete in general. These problems have recently been studied for chordal, claw-free, and permutation graphs. Polynomial time algorithms have been found for solving the problems for these classes of graphs, with one exception: polarity recognition remains NP-complete in claw-free graphs. In this paper, we connect these problems to edge-coloured homomorphism problems. We show that finding unipolar partitions in general and finding monopolar partitions for certain classes of graphs can be efficiently reduced to a polynomial-time solvable 2-edge-coloured homomorphism problem, which we call the colour-bipartition problem. This approach unifies the currently known results on monopolarity and extends them to new classes of graphs.  相似文献   

14.
Given an undirected graph with weights on its vertices, the k most vital nodes independent set (k most vital nodes vertex cover) problem consists of determining a set of k vertices whose removal results in the greatest decrease in the maximum weight of independent sets (minimum weight of vertex covers, respectively). We also consider the complementary problems, minimum node blocker independent set (minimum node blocker vertex cover) that consists of removing a subset of vertices of minimum size such that the maximum weight of independent sets (minimum weight of vertex covers, respectively) in the remaining graph is at most a specified value. We show that these problems are NP-hard on bipartite graphs but polynomial-time solvable on unweighted bipartite graphs. Furthermore, these problems are polynomial also on cographs and graphs of bounded treewidth. Results on the non-existence of ptas are presented, too.  相似文献   

15.
16.
On stable cutsets in claw-free graphs and planar graphs   总被引:4,自引:0,他引:4  
A stable cutset in a connected graph is a stable set whose deletion disconnects the graph. Let K4 and K1,3 (claw) denote the complete (bipartite) graph on 4 and 1+3 vertices. It is NP-complete to decide whether a line graph (hence a claw-free graph) with maximum degree five or a K4-free graph admits a stable cutset. Here we describe algorithms deciding in polynomial time whether a claw-free graph with maximum degree at most four or whether a (claw, K4)-free graph admits a stable cutset. As a by-product we obtain that the stable cutset problem is polynomially solvable for claw-free planar graphs, and also for planar line graphs.Thus, the computational complexity of the stable cutset problem is completely determined for claw-free graphs with respect to degree constraint, and for claw-free planar graphs. Moreover, we prove that the stable cutset problem remains NP-complete for K4-free planar graphs with maximum degree five.  相似文献   

17.
The stable set problem is to find in a simple graph a maximum subset of pairwise non-adjacent vertices. The problem is known to be NP-hard in general and can be solved in polynomial time on some special classes, like cographs or claw-free graphs. Usually, efficient algorithms assume membership of a given graph in a special class. Robust algorithms apply to any graph G and either solve the problem for G or find in it special forbidden configurations. In the present paper we describe several efficient robust algorithms, extending some known results.  相似文献   

18.
不包含2K_2的图是指不包含一对独立边作为导出子图的图.Kriesell证明了所有4连通的无爪图的线图是哈密顿连通的.本文证明了如果图G不包含2K_2并且不同构与K_2,P_3和双星图,那么线图L(G)是哈密顿图,进一步应用由Ryjá(?)ek引入的闭包的概念,给出了直径不超过2的2连通无爪图是哈密顿图这个定理的新的证明方法.  相似文献   

19.
We address the problem of determining a robust maximum flow value in a network with uncertain link capacities taken in a polyhedral uncertainty set. Besides a few polynomial cases, we focus on the case where the uncertainty set is taken to be the solution set of an associated (continuous) knapsack problem. This class of problems is shown to be polynomially solvable for planar graphs, but NP-hard for graphs without special structure. The latter result provides evidence of the fact that the problem investigated here has a structure fundamentally different from the robust network flow models proposed in various other published works.  相似文献   

20.
Level of repair analysis and minimum cost homomorphisms of graphs   总被引:1,自引:0,他引:1  
Level of repair analysis (LORA) is a prescribed procedure for defense logistics support planning. For a complex engineering system containing perhaps thousands of assemblies, sub-assemblies, components, etc. organized into several levels of indenture and with a number of possible repair decisions, LORA seeks to determine an optimal provision of repair and maintenance facilities to minimize overall life-cycle costs. For a LORA problem with two levels of indenture with three possible repair decisions, which is of interest in UK and US military and which we call LORA-BR, Barros [The optimisation of repair decisions using life-cycle cost parameters. IMA J. Management Math. 9 (1998) 403-413] and Barros and Riley [A combinatorial approach to level of repair analysis, European J. Oper. Res. 129 (2001) 242-251] developed certain branch-and-bound heuristics. The surprising result of this paper is that LORA-BR is, in fact, polynomial-time solvable. To obtain this result, we formulate the general LORA problem as an optimization homomorphism problem on bipartite graphs, and reduce a generalization of LORA-BR, LORA-M, to the maximum weight independent set problem on a bipartite graph. We prove that the general LORA problem is NP-hard by using an important result on list homomorphisms of graphs. We introduce the minimum cost graph homomorphism problem, provide partial results and pose an open problem. Finally, we show that our result for LORA-BR can be applied to prove that an extension of the maximum weight independent set problem on bipartite graphs is polynomial time solvable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号