首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以正硅酸乙酯为前驱体,采用无溶剂水解技术,制备出了均一、稳定、透明的SiO_2溶胶,通过透射电子显微镜分析,粒径在100 nm左右;在溶胶中加入甲基丙烯酸甲酯(MMA)和偶氮二异丁腈(AIBN),采用热固化制备了透明的块体PMMA/SiO_2杂化材料,通过差热(DSC)和热重分析(TGA)研究了杂化材料的热性能. DSC结果表明,当体系中的SiO_2质量分数超过20%时,杂化材料无明显的玻璃化转变现象. TGA结果表明,杂化材料的分解温度提高约110 ℃. 透射电子显微镜观察结果表明,无机相均匀分散在有机相中,两相之间没有明显的相分离现象.  相似文献   

2.
利用黄麻碳化后的纤维和吡咯单体作为还原剂,高锰酸钾作为氧化剂,通过原位氧化还原反应法合成了碳纤维/MnO/C一维复合物。扫描电子显微镜(SEM)结果显示,MnO/C纳米颗粒分布在碳纤维的外壁上,MnO被包裹在由聚吡咯碳化而来的碳中,MnO/C纳米颗粒大小为50~150 nm。将制备的产物作为锂离子电池负极材料进行充放电测试,结果表明当电流密度为100mA·g~(-1)时,循环50次后仍具有410 mAh·g~(-1)的比容量,同时也展现了良好的倍率性能。  相似文献   

3.
以纳米Si和碳纳米管(CNTs)为原料,通过简单喷雾干燥方法制备了石榴状结构的Si/CNTs复合负极材料。通过透射电子显微镜可以观察到,CNTs在石榴状复合材料中起到支撑骨架的作用,其中15 wt.% CNTs含量的复合材料具有最佳储锂性能。在200 mA/g的电流密度下循环100圈后,可逆比容量还有1063.2 mA...  相似文献   

4.
杜进  林宁  钱逸泰 《化学学报》2017,75(2):147-153
目前,锂离子电池被广泛地应用于移动电子设备、电动汽车以及混合动力汽车,因此,对高比容量以及长循环寿命的需求也愈加迫切.石墨类负极材料具有优异的循环性能,但理论比容量较低(372 mA·h·g-1),难以满足日益增长的高能量密度需求.Si负极材料因具有较高的可逆比容量(3579 mA·h·g-1)而引起广泛关注.但是,巨大的体积膨胀限制了Si负极的使用.纳米化可以有效的释放Si体积膨胀带来的应力变化,提高其电化学性能.然而,单独的纳米材料具有很高的比表面会引起诸多副反应,阻碍其实际应用.将纳米Si与石墨复合制备Si/石墨复合材料,可充分利用纳米Si和石墨的优点,有望成为新一代高能量密度和长循环寿命锂离子电池负极材料.截至目前,多种技术手段被应用于制备纳米Si/石墨的复合材料,其核心问题是保证纳米Si和石墨的均匀分散以及稳定的结合.根据石墨与纳米Si的复合过程可以将该类材料的制备方法分为:固相法、液相法、以及气相沉积法.本综述对现有文献报道的Si/石墨复合材料制备方法以及所面临的主要问题进行简要总结概括.  相似文献   

5.
为了开发电化学性能优异的新型金属有机骨架基衍生材料,以对苯二甲酸、三氯化铬和九水合硝酸铁作为原料,通过微波法合成了双金属有机骨架材料(Fe-Cr-MOF)。在氮气保护下,对Fe-Cr-MOF进行高温硒化得到纳米颗粒状Fe-CrSe/C复合材料,用作锂离子电池负极。结果表明,在100 mA·g-1的电流密度下,Fe-CrSe/C电极的首圈可逆比容量达到958.4 mAh·g-1,循环150圈后比容量还能维持891.6 mAh·g-1。  相似文献   

6.
以石墨烯为基底,CoCl2·2H2O和NH4VO3为原料,采用水热结合热处理方法合成了Co3V2O8/石墨烯复合电极材料;采用XRD、Raman、XPS、SEM、(HR-)TEM和恒电流充放电等对材料进行了结构表征与电化学性能测试。结果表明:Co3V2O8/rGO复合材料表现出优异的放电比容量、优秀的倍率性能和稳定的循环性能(当电流密度为200 mA·g^-1,经过100次循环后,可逆放电比容量为1208 mAh·g^-1);Co3V2O8/rGO电极材料表现出优异的倍率和循环性能可以归因于:独特的石墨烯包覆结构可以有效地提高材料的导电性和增强结构的稳定性、缓解Co3V2O8粒子在循环过程中的聚结和膨胀现象;此外,Co3V2O8纳米颗粒均匀地嵌在石墨烯层间防止了石墨烯片层间的堆叠。  相似文献   

7.
采用溶胶-凝胶法, 用二氧化钼(MoO2)和C共同包覆Si/石墨粒子制备了Si/石墨/MoO2/C锂离子电池负极材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 循环伏安(CV)和电化学阻抗(EIS)等分析了材料的形貌和性质. 结果表明, MoO2/C的共包覆在缓解材料体积膨胀的同时提高了材料的电子和离子电导率, 进而提高了材料的电化学性能. 复合材料的首次充电比容量为2494 mA·h/g, 首次库仑效率为72%, 经过100次循环后比容量为636.6 mA·h/g.  相似文献   

8.
基于银镜反应,在动态下用稀氨水将银氨配离子还原为纳米银颗粒,并沉积在硅颗粒表面。与常用含银复合材料之银盐直接还原法和硝酸盐高温分解法相比,配位还原法具有制备工艺简单快速、银颗粒分散度高和银盐转化率高等特点。得到的硅/银复合材料中粒径小于20 nm的银颗粒均匀分布在硅颗粒表面,无其他杂质相。与纯硅粉负极相比,硅/银复合材料(含银10wt%)能有效抑制硅负极在循环初始阶段的容量快速衰减,30次循环可逆容量大于500 mAh·g-1。交流阻抗测试显示,纳米银颗粒的存在能显著提高电子电导,进而改善硅负极的循环稳定性。  相似文献   

9.
以SBA-15为前驱体,在660 ℃下通过镁热还原反应得到介孔硅材料,并对其进行碳包覆处理,成功地制备了有序介孔Si/C(OMP-Si/C)复合材料。该OMP-Si/C材料保留了SBA-15模板的有序蜂窝孔道,并且形成具有高堆积密度的莲藕链束结构。文中还提出了一个SBA-15镁热还原液态环境反应模型,探讨了660 ℃下硅的高度有序介孔与莲藕链束结构的形成机理。利用X射线衍射(XRD)仪、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸脱附法及拉曼光谱对样品物相和微观形貌进行了表征。这种高度有序介孔Si/C复合材料具有优异的电化学性能,展现出其在第二代锂电池负极材料领域中的潜在应用价值。  相似文献   

10.
锌酸钙负极材料的水热法制备及其性能研究   总被引:1,自引:0,他引:1  
采用水热法,合成了锌酸钙电极材料,制备成电极并组装成模拟锌镍电池.采用X射线衍射、扫描电子显微镜、热重分析、粒度分析、红外光谱以及模拟电池的充放电等方法,对制备出的样品进行了表征.结果表明该方法制备的锌酸钙具有不规则的晶形、较小的粒径和较少的结晶水.模拟锌镍电池的充放电实验表明该样品材料具有良好的电极材料性能:以该锌酸钙为负极活性物质的模拟锌镍电池具有较低的充电电压、较高的放电平台和优良的循环性能.  相似文献   

11.
磁性纳米TiO_2/SiO_2/NiFe_2O_4的制备及其催化性能   总被引:1,自引:0,他引:1  
采用溶胶凝胶法制备了核壳结构磁性纳米TiO2/SiO2/NiFe2O4催化剂.利用XRD、TEM、VSM等手段对样品的粒径、晶体结构、磁性和光催化性能进行了研究.结果表明:SiO2/NiFe2O4的加入抑制了TiO2纳米粒子的生长,使晶粒尺寸减小,促进了锐钛矿相向金红石相的转变,催化剂的回收率和光催化性能均得到提高.光催化实验结果表明,当SiO2/NiFe2O4的负载量为15%时,焙烧温度为500℃时对亚甲基兰的脱色率最高.  相似文献   

12.
采用无表面活性剂回流法制备了蜂窝状TiO2/石墨烯(GNs)复合材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)表征结果表明,TiO2颗粒约5~10 nm,均匀地分散在石墨烯的表面.锂电池测试显示,1C充电容量稳定在240.1 mAh.g-1;30C充电容量为169.5 mAh.g-1;当电流调回1C时,其充电容量仍可完全恢复(241.7 mAh.g-1);10C 300周期循环电极容量保持率为89.8%.  相似文献   

13.
以磺化聚醚砜(SPES)为基体,以不同比例的SiO2溶胶与磷钨酸(PWA)为掺杂物,制备了一种有望用于直接甲醇燃料电池(DMFC)的新型SPES/PWA/SiO2有机-无机复合膜,并经热失重分析(TGA)、差示扫描量热仪(DSC)、扫描电镜(SEM)-X射线能谱分析(EDX)等对膜的结构和性能进行了表征,探讨了复合膜用作质子交换膜的可能性.结果表明:复合膜较纯SPES膜具有更高的热稳定性、玻璃化转变温度和吸水率;虽然在室温和电池操作温度(80℃)下,复合膜的拉伸强度均低于纯SPES膜,但即使当SiO2含量高达20%(w)时,复合膜的拉伸强度仍高于Nafion112膜的;SEM图片显示SiO2和PWA在膜中分布均匀,这将有利于连续质子传输通道的形成.对于SiO2含量为15%(w),PWA含量为6%(w)的复合膜,其室温质子传导率达到了0.034S·cm-1,与Nafion112膜的相当,但其甲醇渗透率明显降低,仅为商用Nafion112膜的七分之一左右,这表明该复合膜在直接甲醇燃料电池中具有良好的应用前景.  相似文献   

14.
以大孔SiO2为载体,通过SnCl2/SbCl3的乙二醇溶液的浸渍,孔道内两步水解和高温煅烧等处理,制备出大尺寸大孔径的ATO/SiO2导电材料,用SEM﹑FTIR﹑XRD﹑XPS对其进行结构表征,用稳态极化和苯胺电化学聚合研究其电化学特性。结果表明,ATO以10nm尺寸的微粒形式均匀致密的负载在SiO2薄层上,电导率随ATO含量的增加而提高,负载三次后的体积电阻是18Ω·cm,比表面积达到77m2·g-1。ATO/SiO2大孔电极在酸性和中性条件下分别具有2.5和2.2V的析氧电位。SiO2/ATO电极在恒电流下可以使苯胺发生电氧化聚合,并在ATO表面覆盖上聚苯胺导电膜,循环伏安实验表明聚苯胺具有电活性,并且电信号随着电极润湿程度的增加而增加,表明大孔电极的高比表面积对电化学反应有促进作用。  相似文献   

15.
以硅藻土为原料, 通过镁热还原反应得到多孔硅, 进一步利用砂磨得到纳米多孔硅, 然后通过球磨将其与片状石墨和沥青均匀混合, 采用喷雾干燥技术造粒, 高温煅烧后制备了纳米多孔硅/石墨/碳复合微球. 对所得复合微球的结构和理化性质进行了表征. 纳米多孔硅/石墨/碳复合微球作为锂离子电池负极材料展示出较高的可逆容量、 优异的循环稳定性(100次循环后容量仍为790 mA·h/g, 容量保持率可达96.7%)及较好的倍率性能.  相似文献   

16.
以Ni(NO3)2·6H2O和NaOH为原料,采用水热法合成了锂离子电池负极材料NiO。通过TG-DSC分析,确定了合成过程的反应机理。通过XRD、SEM和恒流充放电测试,研究了NiO样品的结构、形貌及电化学性能。400 ℃焙烧得到立方结构的NiO产品,以0.10 mA·cm-2充放电,首次放电比容量达到1 151 mAh·g-1,经过20次循环后的比容量仍为776 mAh·g-1。  相似文献   

17.
以苯胺、过硫酸铵和SnO2为原料通过微乳液聚合法合成了SnO2-聚苯胺的复合材料,并通过X-射线衍射、红外吸收光谱、扫描电镜和电化学测试等手段对所得复合材料进行了表征与分析。结果表明,复合材料中的聚苯胺是无定形的,聚苯胺在反应过程中沉积在SnO2颗粒上形成SnO2被聚苯胺包裹的复合材料。电化学测试说明,该复合材料的首次容量达到657.6 mAh·g-1,经过80次循环后每次循环的容量衰减率仅为0.092%。  相似文献   

18.
采用溶剂热法一步合成纳米尺寸CoFe2O4/GNS复合材料(直径约为15 nm),其颗粒尺寸均一,且均匀分散于石墨烯表面. 电化学测试结果表明,该复合物电极具有良好的循环和倍率性能,500 mA·g-1电流密度下100周期循环比容量稳定在709 mAh·g-1, 容量保持率高达95.8%;2 A·g-1电流密度,其比容量仍高达482 mAh·g-1.  相似文献   

19.
等离子体辅助球磨Si-C复合负极材料及其电化学性能研究   总被引:1,自引:0,他引:1  
首次采用介质阻挡放电等离子体辅助高能两次球磨制得Si-C复合材料,其结构为微纳尺度硅颗粒均匀分散于微米级碳基体上. Si-C复合电极首周期循环放电容量为1259 mAh·g-1,20和100周期循环的容量分别为474和396 mAh·g-1. 该电极充放电曲线和交流阻抗测试的结果表明,复合材料中的硅和碳均参与锂离子嵌/脱反应,且其电荷传导阻抗明显低于纯Si.  相似文献   

20.
针对硅氧基负极材料的主要缺陷,在SiOx/石墨基负极材料中巧妙地引入了Si-Fe、SnO2合金化合物,以改善其电化学性能,并通过机械球磨、喷雾干燥和高温热解策略制备了一系列硅氧基复合负极材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱仪(EDS)和恒流充放电测试仪对复合材料的物相、微观形貌及电化学性能进行了表征。电化学测试结果表明,复合质量分数5% Si-Fe的目标材料充电容量高达443.4 mAh·g-1,首次库仑效率达75.2%,循环310圈之后容量仍有369.1 mAh·g-1,容量保持率为81.0%(相对第11圈);同时,经Si-Fe复合之后,锂离子扩散速率得到了明显改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号