首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanisms of regioselective reductive openings of acetals were investigated in several model systems by a combination of Hammett plots, kinetic experiments, density functional calculations, and (11)B NMR. The regioselectivity of borane reductions of cyclic acetals can be controlled by the choice of borane. Lewis acid activation of BH3 x NMe3 increases the reaction rate and renders the borane the most electrophilic species, which associates to the more electron-rich oxygen of the acetal. In contrary, without activation, the regioselectivity is instead directed by the Lewis acid, as exemplified by the reaction with BH3 x THF.  相似文献   

2.
3.
Electrochemistry (EC) coupled to mass spectrometry (MS) has already been successfully applied to metabolism research for pharmaceutical applications, especially for the oxidation behaviour of drug substances. Xenobiotics (chemicals in the environment) also undergo various conversions; some of which are oxidative reactions. Therefore, EC-MS might be a suitable tool for the investigation of oxidative behaviour of xenobiotics. A further evaluation of this approach to environmental research is presented in the present paper using sulfonamide antibiotics. The results with sulfadiazine showed that EC-MS is a powerful tool for the elucidation of the oxidative degradation mechanism within a short time period. In addition, it was demonstrated that EC-MS can be used as a fast and easy method to model the chemical binding of xenobiotics to soil. The reaction of sulfadiazine with catechol, as a model substance for organic matter in soil, led to the expected chemical structure. Finally, by using EC-MS a first indication was obtained of the persistence of a component under chemical oxidation conditions for the comparison of the oxidative stability of different classes of xenobiotics. Overall, using just a few examples, the study demonstrates that EC-MS can be applied as a versatile tool for mechanistic studies of oxidative degradation pathways of xenobiotics and their possible interaction with soil organic matter as well as their oxidative stability in the environment. Further studies are needed to evaluate the full range of possibilities of the application of EC-MS in environmental research.  相似文献   

4.
The experimental and computational mechanistic details of the Pd(OAc)(2)/TEA-catalyzed aerobic alcohol oxidation system are disclosed. Measurement of various kinetic isotope effects and the activation parameters as well as rate law derivation support rate-limiting deprotonation of the palladium-coordinated alcohol. Rate-limiting deprotonation of the alcohol is contrary to the majority of related kinetic studies for Pd-catalyzed aerobic oxidation of alcohols, which propose rate-limiting beta-hydride elimination. This difference in the rate-limiting step is supported by the computational model, which predicts the activation energy for deprotonation is 3 kcal/mol higher than the activation energy for beta-hydride elimination. The computational features of the similar Pd(OAc)(2)/pyridine system were also elucidated. Details of the study illustrate that the use of TEA results in an active catalyst that has only one ligand bound to the Pd, resulting in a significant lowering of the activation energy for beta-hydride elimination and, therefore, a catalyst that is active at room temperature.  相似文献   

5.
Tri- and tetrasubstituted anilines are formed in good to excellent yields by the addition of ketones to vinamidinium salts (up to 98%). The reaction proceeds via the formation of dienone intermediates, which react to form an enamine with the liberated amine. In the case of a nitro, or dimethylaminomethylene substituent, the enamines undergo a facile electrocyclic ring closure to form a cyclohexadiene, which goes on to form anilines with a high degree of selectivity (up to 50:1) with a minor competing pathway proceeding via the enol providing phenols. Competition experiments using isotopic substitution reveal that the rate determining step en route to dienone is enol/enolate addition to the vinamidinium salt, which is characterized by an inverse secondary isotope effect (k(H/D) 0.7-0.9). Computational studies have been used to provide a framework for understanding the reaction pathway. The original proposal for a [1,5]-H shift was ruled out on the basis of the calculations, which did not locate a thermally accessible transition state. The minimum energy conformation of the enamine is such that a facile electrocyclic ring closure is ensured, which is corroborated by the experimental studies. A framework for understanding the reaction pathway is presented.  相似文献   

6.
7.
From incoherent inelastic neutron scattering studies of solid C2Cl6 the in- and out-of-phase torsions about the C-C axis are assigned at 56 and 95 cm?1, respectively. Using a model for the potential barriers in the solid the torsional frequency in the gas has been calculated to be 76.7 cm?1 and the internal barrier to be 67.8 kJ mol?1.  相似文献   

8.
Nanoscale Fe0 was synthesized through a reductive method in this paper. The experiments were per-formed to investigate the reduction of 2,4-dichlorophenol (2,4-DCP) by nanoscale Fe0 under different conditions. The pathways for the reduction of 2,4-DCP by nanoscale Fe0 were discussed. Batch studies demonstrated that the mechanism includes adsorption, dechlorination and cleavage of the benzene ring. Dechlorination, which occurs after 2,4-DCP molecule is adsorbed on the interface of Fe particle, is an interfacial reaction. One or two chlorine atom can be removed from 2,4-DCP to form 2-chlorophenol, 4-chlorophenol or phenol. As the concentration of 2,4-DCP increased, the relative dechlorination ratio decreased. However, the reduced quantities of 2,4-DCP increased. Temperature can influence dechlo-rination rate and pathway. Dechlorination is prior to cleavage of the benzene ring at a higher tempera-ture, but at a lower temperature, adsorption may be the main pathway, and cleavage of the benzene ring may be prior to dechlorination.  相似文献   

9.
10.
A facile prototropic rearrangement of N-(prop-2-ynyl)amines to 1-aminopropa-1,2-dienes, followed by acid hydrolysis, affords a novel synthesis of α,β-unsaturated aldehyde. The mechanism of the reaction has been examined by deuterium labeling.  相似文献   

11.
A detailed computational study of the deamination reaction of melamine by OH, n H2O/OH, n H2O (where n = 1, 2, 3), and protonated melamine with H2O, has been carried out using density functional theory and ab initio calculations. All structures were optimized at M06/6‐31G(d) level of theory, as well as with the B3LYP functional with each of the basis sets: 6‐31G(d), 6‐31 + G(d), 6‐31G(2df,p), and 6‐311++G(3df,3pd). B3LYP, M06, and ω B97XD calculations with 6‐31 + G(d,p) have also been performed. All structures were optimized at B3LYP/6‐31 + G(d,p) level of theory for deamination simulations in an aqueous medium, using both the polarizable continuum solvation model and the solvation model based on solute electron density. Composite method calculations have been conducted at G4MP2 and CBS‐QB3. Fifteen different mechanistic pathways were explored. Most pathways consisted of two key steps: formation of a tetrahedral intermediate and in the final step, an intermediate that dissociates to products via a 1,3‐proton shift. The lowest overall activation energy, 111 kJ mol?1 at G4MP2, was obtained for the deamination of melamine with 3H2O/OH?.  相似文献   

12.
The reduction of a series of electron deficient aromatic heterocycles has been examined using electrochemical techniques: the analysis was performed under anhydrous conditions at low temperature, so as to mimic typical synthetic reducing conditions.  相似文献   

13.
Despite the importance of regioselective reductive openings of cyclic acetals, mechanistic details are scarce. In this study 4,6-O-benzylidene acetals were used as model compounds for deciphering the mechanism of regioselective openings using a variety of reducing agents. Competitive isotopic studies aiming at primary and secondary isotope effects, as well as an electron-deficient substrate, were used to evaluate stereo- and regioselectivity. We show that there are three distinctly different mechanistic pathways. In nonpolar solvents, such as toluene, the acetal is activated by the very reactive naked Lewis acid to give a fully developed oxocarbenium ion that is then reduced by the borane, with low stereoselectivity. In THF the reactivity of the Lewis acid is moderated by complex formation with the solvent. These reactions are thus much slower and proceed through an intimate ion pair and thereby show high stereoselectivities. The regioselectivity in these reactions is directed by the interaction between the Lewis acid and the most nucleophilic oxygen of the acetal, thus yielding a free 6-hydroxyl group. Finally, boranes such as BH(3)·NMe(3) are activated by Lewis acid, which results in the borane being the most electrophilic species, and consequently the reaction shows inversed regioselectivity to give a free 4-hydroxyl group. These reactions proceed through an oxocarbenium ion and thus show low stereoselectivity.  相似文献   

14.
The thermodynamic properties and reaction mechanism of the Morita-Baylis-Hillman (MBH) reaction have been investigated through experimental and computational techniques. The impossibility to accelerate this synthetically valuable transformation by increasing the reaction temperature has been rationalized by variable-temperature experiments and MP2 theoretical calculations of the reaction thermodynamics. An increase in temperature results in a switching of the equilibrium to the reactants occurring at even moderate temperature levels. The complex reaction mechanism for the MBH reaction has been investigated through an in-depth analysis of the suggested alternative pathways, using the M06-2X computational method. The results provided by this theoretical approach are in agreement with all the experimental/kinetic evidence such as reaction order, acceleration by protic species (methanol, phenol), and autocatalysis. In particular, the existing controversy about the character of the key proton transfer in the MBH reaction (Aggarwal versus McQuade pathways) has been resolved. Depending on the specific reaction conditions both suggested pathways are competing mechanisms, and depending on the amount of protic species and the reaction progress (early or late stage) either of the two mechanisms will be favored.  相似文献   

15.
The electrooxidation of dilute (1 mM) iodide at the gold-aqueous interface has been examined by rotating disk voltammetry combined with surface-enhanced Raman spectroscopy (SERS) in order to identify the surface species formed and hence to shed light on the electrooxidation mechanism. Marked changes in the SER spectra occur upon shifting the electrode potential through the region where faradaic current flows, the characteristic 123 and 158 cm−1 bands associated with adsorbed iodide being supplemented and eventually supplanted by bands at 110, 145 and 160–175 cm−1, the latter two being especially intense. The new bands are assigned to higher polyiodides and molecular iodine. The latter species appears to be the major interfacial product associated with faradaic current flow. Iodide forms an irreversibly adsorbed and electroinactive layer at gold in the absence of solution iodide, as evidenced by the survival of the 123 and 158 cm−1 SERS bands even at far positive potentials under these conditions. The results obtained for dilute iodide solutions are compared and contrasted with those obtained at higher iodide concentrations. For the latter conditions, the observed “surface” Raman spectra arise from resonance enhancement of the thick insoluble iodine films and solution triiodide formed in the convective diffusion layer rather than from SERS of species present in the double layer. Criteria for distinguishing between these two possibilities for systems involving such electrogenerated species are described.  相似文献   

16.
Hybrid quantum mechanical/molecular mechanics (QM-MM) calculations [Callis and Liu, J. Phys. Chem. B 2004, 108, 4248-4259] make a strong case that the large variation in tryptophan (Trp) fluorescence yields in proteins is explained by ring-to-backbone amide electron transfer, as predicted decades ago. Quenching occurs in systems when the charge transfer (CT) state is brought below the fluorescing state (1L(a)) as a result of strong local electric fields. To further test this hypothesis, we have measured the fluorescence quantum yield in solvents of different polarity for the following systems: N-acetyl-L-tryptophanamide (NATA), an analogue for Trp in a protein; N-acetyl-L-tryptophan ethyl ester (NATE), wherein the Trp amide is replaced by an ester group, lowering the CT state energy; and 3-methylindole (3MI), a control wherein this quenching mechanism cannot take place. Experimental yields in water are 0.31, 0.13, and 0.057 for 3MI, NATA, and NATE, respectively, whereas, in the nonpolar aprotic solvent dioxane, all three have quantum yields near 0.35, indicating the absence of electron transfer. In alkyl alcohols the quantum yield for NATA and NATE is between that found for water and that found for dioxane, and it is surprisingly independent of chain length (varying from methanol to decanol), revealing that microscopic H-bonding, and not the bulk dielectric constant, dictates the electron transfer rate. QM-MM calculations indicate that, when averaged over the six rotamers, the greatly increased quenching found in water relative to dioxane can be attributed mainly to the larger fluctuations of the energy gap in water. These experiments and calculations are in complete accord with quenching by a solvent stabilized charge transfer from ring to amide state in proteins.  相似文献   

17.
[reaction: see text] We have found that beta-ketophosphonic acids can undergo facile dephosphonylation under fairly mild conditions. The rate of dephosphonylation is dependent on the electronic nature of the substituent on the carbon atom alpha to phosphorus, with electron-withdrawing groups accelerating the process. 31P NMR studies were used to probe the mechanism for the process.  相似文献   

18.
19.
Rhodamine photosensitizers (PSs) substituting S or Se for O in the xanthene ring give turnover numbers (TONs) as high as 9000 for the generation of hydrogen via the reduction of water using [Co(III)(dmgH)(2)(py)Cl] (where dmgH = dimethylglyoximate and py = pyridine) as the catalyst and triethanolamine as the sacrificial electron donor. The turnover frequencies were 0, 1700, and 5500 mol H(2)/mol PS/h for O, S, and Se derivatives, respectively (Φ(H(2)) = 0%, 12.2%, and 32.8%, respectively), which correlates well with relative triplet yields estimated from quantum yields for singlet oxygen generation. Phosphorescence from the excited PS was quenched by the sacrificial electron donor. Fluorescence lifetimes were similar for the O- and S-containing rhodamines (~2.6 ns) and shorter for the Se analog (~0.1 ns). These data suggest a reaction pathway involving reductive quenching of the triplet excited state of the PS giving the reduced PS(-) that then transfers an electron to the Co catalyst. The longer-lived triplet state is necessary for effective bimolecular electron transfer. While the cobalt/rhodamine/triethanolamine system gives unprecedented yields of hydrogen for the photoreduction of water, mechanistic insights regarding the overall reaction pathway as well as system degradation offer significant guidance to developing even more stable and efficient photocatalytic systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号