首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an accurate investigation of the algebraic conditions that the symbols of a non-singular, univariate, binary, non-stationary subdivision scheme should fulfill in order to reproduce spaces of exponential polynomials. A subdivision scheme is said to possess the property of reproducing exponential polynomials if, for any initial data uniformly sampled from some exponential polynomial function, the scheme yields the same function in the limit. The importance of this property is due to the fact that several curves obtained by combinations of exponential polynomials (such as conic sections, spirals or special trigonometric and hyperbolic functions) are considered of interest in geometric modeling. Since the space of exponential polynomials trivially includes standard polynomials, this work extends the theory on polynomial reproduction to the non-stationary context. A significant application of the derived algebraic conditions on the subdivision symbols is the construction of new non-stationary subdivision schemes with specific reproduction properties.  相似文献   

2.
We present an accurate investigation of the algebraic conditions that the symbols of a non-singular, univariate, binary, non-stationary subdivision scheme should fulfill in order to reproduce spaces of exponential polynomials. A subdivision scheme is said to possess the property of reproducing exponential polynomials if, for any initial data uniformly sampled from some exponential polynomial function, the scheme yields the same function in the limit. The importance of this property is due to the fact that several curves obtained by combinations of exponential polynomials (such as conic sections, spirals or special trigonometric and hyperbolic functions) are considered of interest in geometric modeling. Since the space of exponential polynomials trivially includes standard polynomials, this work extends the theory on polynomial reproduction to the non-stationary context. A significant application of the derived algebraic conditions on the subdivision symbols is the construction of new non-stationary subdivision schemes with specific reproduction properties.  相似文献   

3.
A generic technique for the construction of diversity of interpolatory subdivision schemes on the base of polynomial and discrete splines is presented in the paper. The devised schemes have rational symbols and infinite masks but they are competitive (regularity, speed of convergence, computational complexity) with the schemes that have finite masks. We prove exponential decay of basic limit functions of the schemes with rational symbols and establish conditions, which guaranty the convergence of such schemes on initial data of power growth. Mathematics subject classifications (2000) 65D17, 65D07, 93E11  相似文献   

4.
Bivariate interpolatory Hermite subdivision schemes have recently been applied to build free-form subdivision surfaces. It is well known to geometric modelling practitioners that interpolatory schemes typically lead to ``unfair" surfaces--surfaces with unwanted wiggles or undulations--and noninterpolatory (a.k.a. approximating in the CAGD community) schemes are much preferred in geometric modelling applications. In this article, we introduce, analyze and construct noninterpolatory Hermite subdivision schemes, a class of vector subdivision schemes which can be applied to iteratively refine Hermite data in a not necessarily interpolatory fashion. We also study symmetry properties of such subdivision schemes which are crucial for application in free-form subdivision surfaces.

A key step in our mathematical analysis of Hermite type subdivision schemes is that we make use of the strong convergence theory of refinement equations to convert a prescribed geometric condition on the subdivision scheme--namely, the subdivision scheme is of Hermite type--to an algebraic condition on the subdivision mask. The latter algebraic condition can then be used in a computational framework to construct specific schemes.

  相似文献   


5.
This paper is concerned with a family of nonstationary, interpolatory subdivision schemes that have the capability of reproducing functions in a finite-dimensional subspace of exponential polynomials. We give conditions for the existence and uniqueness of such schemes, and analyze their convergence and smoothness. It is shown that the refinement rules of an even-order exponentials reproducing scheme converge to the Dubuc—Deslauriers interpolatory scheme of the same order, and that both schemes have the same smoothness. Unlike the stationary case, the application of a nonstationary scheme requires the computation of a different rule for each refinement level. We show that the rules of an exponentials reproducing scheme can be efficiently derived by means of an auxiliary orthogonal scheme , using only linear operations. The orthogonal schemes are also very useful tools in fitting an appropriate space of exponential polynomials to a given data sequence.  相似文献   

6.
In this paper we present a general strategy to deduce a family of interpolatory masks from a symmetric Hurwitz non-interpolatory one. This brings back to a polynomial equation involving the symbol of the non-interpolatory scheme we start with. The solution of the polynomial equation here proposed, tailored for symmetric Hurwitz subdivision symbols, leads to an efficient procedure for the computation of the coefficients of the corresponding family of interpolatory masks. Several examples of interpolatory masks associated with classical approximating masks are given.  相似文献   

7.
In our previous work, we have given an algorithm for segmenting a simplex in the n-dimensional space into rt n+ 1 polyhedrons and provided map F which maps the n-dimensional unit cube to these polyhedrons. In this paper, we prove that the map F is a one to one correspondence at least in lower dimensional spaces (n _〈 3). Moreover, we propose the approximating subdivision and the interpolatory subdivision schemes and the estimation of computational complexity for triangular Bézier patches on a 2-dimensional space. Finally, we compare our schemes with Goldman's in computational complexity and speed.  相似文献   

8.
The paper presents a bivariate subdivision scheme interpolating data consisting of univariate functions along equidistant parallel lines by repeated refinements. This method can be applied to the construction of a surface passing through a given set of parametric curves. Following the methodology of polysplines and tension surfaces, we define a local interpolator of four consecutive univariate functions, from which we sample a univariate function at the mid-point. This refinement step is the basis to an extension of the 4-point subdivision scheme to our setting. The bivariate subdivision scheme can be reduced to a countable number of univariate, interpolatory, non-stationary subdivision schemes. Properties of the generated interpolant are derived, such as continuity, smoothness and approximation order.  相似文献   

9.
An important capability for a subdivision scheme is the reproducing property of circular shapes or parts of conics that are important analytical shapes in geometrical modeling. In this regards, this study first provides necessary and sufficient conditions for a non-stationary subdivision to have the reproducing property of exponential polynomials. Then, the approximation order of such non-stationary schemes is discussed to quantify their approximation power. Based on these results, we see that the exponential B-spline generates exponential polynomials in the associated spaces, but it may not reproduce any exponential polynomials. Thus, we present normalized exponential B-splines that reproduce certain sets of exponential polynomials. One interesting feature is that the set of exponential polynomials to be reproduced is varied depending on the normalization factor. This provides us with the necessary accuracy and flexibility in designing target curves and surfaces. Some numerical results are presented to support the advantages of the normalized scheme by comparing them to the results without normalization.  相似文献   

10.
We study scalar multivariate non-stationary subdivision schemes with a general integer dilation matrix. We characterize the capability of such schemes to reproduce exponential polynomials in terms of simple algebraic conditions on their symbols. These algebraic conditions provide a useful theoretical tool for checking the reproduction properties of existing schemes and for constructing new schemes with desired reproduction capabilities and other enhanced properties. We illustrate our results with several examples.  相似文献   

11.
In this paper we present a family of Non-Uniform Local Interpolatory (NULI) subdivision schemes, derived from compactly supported interpolatory fundamental splines with non-uniform knots (NULIFS). For this spline family, the knot-partition is defined by a sequence of break points and by one additional knot, arbitrarily placed along each knot-interval. The resulting refinement algorithms are linear and turn out to contain a set of edge parameters that, when fixed to a value in the range [0,1], allow us to achieve special shape features by simply moving each auxiliary knot between the break points. Among all the members of this new family of schemes, we will then especially analyze the NULI 4-point refinement. This subdivision scheme has all the fundamental features of the quadratic fundamental spline basis it is originated from, namely compact support, C 1 smoothness, second order polynomials reproduction and approximation order 3. In addition the NULI 4-point subdivision algorithm has the possibility of setting consecutive edge parameters to simulate double and triple knots—that are not considered by the authors of the corresponding spline basis—thus allowing for limit curves with crease vertices, without using an ad hoc mask. Numerical examples and comparisons with other methods will be given to the aim of illustrating the performance of the NULI 4-point scheme in the case of highly non-uniform initial data.  相似文献   

12.
We extend our previous work on interpolatory vector subdivision schemes to the multivariate case. As in the univariate case we show that the diagonal and off-diagonal elements of such a scheme have a significantly different structure and that under certain circumstances symmetry of the mask can increase the polynomial reproduction power of the subdivision scheme. Moreover, we briefly point out how tensor product constructions for vector subdivision schemes can be obtained.  相似文献   

13.
The objective of this paper is to introduce a general procedure for deriving interpolatory surface subdivision schemes with “symmetric subdivision templates” (SSTs) for regular vertices. While the precise definition of “symmetry” will be clarified in the paper, the property of SSTs is instrumental to facilitate application of the standard procedure for finding symmetric weights for taking weighted averages to accommodate extraordinary (or irregular) vertices in surface subdivisions, a topic to be studied in a continuation paper. By allowing the use of matrices as weights, the SSTs introduced in this paper may be constructed to overcome the size barrier limited to scalar-valued interpolatory subdivision templates, and thus avoiding the unnecessary surface oscillation artifacts. On the other hand, while the old vertices in a (scalar) interpolatory subdivision scheme do not require a subdivision template, we will see that this is not the case for the matrix-valued setting. Here, we employ the same definition of interpolation subdivisions as in the usual scalar consideration, simply by requiring the old vertices to be stationary in the definition of matrix-valued interpolatory subdivisions. Hence, there would be another complication when the templates are extended to accommodate extraordinary vertices if the template sizes are not small. In this paper, we show that even for C2 interpolatory subdivisions, only one “ring” is sufficient in general, for both old and new vertices. For example, for 1-to-4 split C2 interpolatory surface subdivisions, we obtain matrix-valued symmetric interpolatory subdivision templates (SISTs) for both triangular and quadrilateral meshes with sizes that agree with those of the Loop and Catmull–Clark schemes, respectively. Matrix-valued SISTs of similar sizes are also constructed for C2 interpolatory and subdivision schemes in this paper. In addition to small template sizes, an obvious feature of matrix-valued weights is the flexibility for introducing shape-control parameters. Another significance is that, in contrast to the usual scalar setting, matrix-valued SISTs can be formulated in terms of the coefficient sequence of some vector refinement equation of interpolating bivariate C2 splines with small support. For example, by modifying the spline function vectors introduced in our previous work [C.K. Chui, Q.T. Jiang, Surface subdivision schemes generated by refinable bivariate spline function vectors, Appl. Comput. Harmon. Anal. 15 (2003) 147–162; C.K. Chui, Q.T. Jiang, Refinable bivariate quartic and quintic C2-splines for quadrilateral subdivisions, Preprint, 2004], C2 symmetric interpolatory subdivision schemes associated with refinement equations of C2 cubic and quartic splines on the 6-directional and 4-directional meshes, respectively, are also constructed in this paper.  相似文献   

14.
15.
A criterion of convergence for stationary nonuniform subdivision schemes is provided. For periodic subdivision schemes, this criterion is optimal and can be applied to Hermite subdivision schemes which are not necessarily interpolatory. For the Merrien family of Hermite subdivision schemes which involve two parameters, we are able to describe explicitly the values of the parameters for which the Hermite subdivision scheme is convergent.  相似文献   

16.
Given a dilation matrix A :ℤd→ℤd, and G a complete set of coset representatives of 2π(A −Td/ℤd), we consider polynomial solutions M to the equation ∑ g∈G M(ξ+g)=1 with the constraints that M≥0 and M(0)=1. We prove that the full class of such functions can be generated using polynomial convolution kernels. Trigonometric polynomials of this type play an important role as symbols for interpolatory subdivision schemes. For isotropic dilation matrices, we use the method introduced to construct symbols for interpolatory subdivision schemes satisfying Strang–Fix conditions of arbitrary order. Research partially supported by the Danish Technical Science Foundation, Grant No. 9701481, and by the Danish SNF-PDE network.  相似文献   

17.
Linear interpolatory subdivision schemes of Cr smoothness have approximation order at least r+1. The present paper extends this result to nonlinear univariate schemes which are in proximity with linear schemes in a certain specific sense. The results apply to nonlinear subdivision schemes in Lie groups and in surfaces which are obtained from linear subdivision schemes. We indicate how to extend the results to the multivariate case.  相似文献   

18.
This paper describes an algebraic construction of bivariate interpolatory subdivision masks induced by three-directional box spline subdivision schemes. Specifically, given a three-directional box spline, we address the problem of defining a corresponding interpolatory subdivision scheme by constructing an appropriate correction mask to convolve with the three-directional box spline mask. The proposed approach is based on the analysis of certain polynomial identities in two variables and leads to interesting new interpolatory bivariate subdivision schemes.  相似文献   

19.
A new family of interpolatory stationary subdivision schemes is introduced by using radial basis function interpolation. This work extends earlier studies on interpolatory stationary subdivision schemes in two aspects. First, it provides a wider class of interpolatory schemes; each 2L-point interpolatory scheme has the freedom of choosing a degree (say, m) of polynomial reproducing. Depending on the combination (2L,m), the proposed scheme suggests different subdivision rules. Second, the scheme turns out to be a 2L-point interpolatory scheme with a tension parameter. The conditions for convergence and smoothness are also studied. Dedicated to Prof. Charles A. Micchelli on the occasion of his 60th birthday Mathematics subject classifications (2000) 41A05, 41A25, 41A30, 65D10, 65D17. Byung-Gook Lee: This work was done as a part of Information & Communication fundamental Technology Research Program supported by Ministry of the Information & Communication in Republic of Korea. Jungho Yoon: Corresponding author. Supported by the Korea Science and Engineering Foundation grant (KOSEF R06-2002-012-01001).  相似文献   

20.
In this work we construct subdivision schemes refining general subsets of ? n and study their applications to the approximation of set-valued functions. Differently from previous works on set-valued approximation, our methods are developed and analyzed in the metric space of Lebesgue measurable sets endowed with the symmetric difference metric. The construction of the set-valued subdivision schemes is based on a new weighted average of two sets, which is defined for positive weights (corresponding to interpolation) and also when one weight is negative (corresponding to extrapolation). Using the new average with positive weights, we adapt to sets spline subdivision schemes computed by the Lane–Riesenfeld algorithm, which requires only averages of pairs of numbers. The averages of numbers are then replaced by the new averages of pairs of sets. Among other features of the resulting set-valued subdivision schemes, we prove their monotonicity preservation property. Using the new weighted average of sets with both positive and negative weights, we adapt to sets the 4-point interpolatory subdivision scheme. Finally, we discuss the extension of the results obtained in metric spaces of sets, to general metric spaces endowed with an averaging operation satisfying certain properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号