首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incompressible 3-D DNS is performed in non-decaying turbulence with single step chemistry to validate a new analytical expression for turbulent burning velocity. The proposed expression is given as a sum of laminar and turbulent contributions, the latter of which is given as a product of turbulent diffusivity in unburned gas and inverse scale of wrinkling at the leading edge. The bending behavior of U T at higher u′ was successfully reproduced by the proposed expression. It is due to decrease in the inverse scale of wrinkling at the leading edge, which is related with an asymmetric profile of FSD with increasing u′. Good agreement is achieved between the analytical expression and the turbulent burning velocities from DNS throughout the wrinkled, corrugated and thin reaction zone regimes. Results show consistent behavior with most experimental correlations in literature including those by Bradley et al. (Philos Trans R Soc Lond A 338:359–387, 1992), Peters (J Fluid Mech 384:107–132, 1999) and Lipatnikov et al. (Progr Energ Combust Sci 28:1–74, 2002).  相似文献   

2.
Turbulent plane boundary layer flows of an incompressible fluid are considered. A refinement of the known Coles wake law is proposed. This refinement makes it possible to ensure the smooth matching of the turbulent boundary layer velocity profile with the outer flow and to extend the range of validity of the law to the case of large positive pressure gradients. The accuracy of the analytical approximation obtained is verified by comparison with the known experimental equilibrium velocity profiles. Using the approximation proposed, a relation for calculating the cross-sectional distribution of the Reynolds stress in the equilibrium boundary layer is derived. The pressure distributions for which the equilibrium turbulent boundary layer flows are single- and two-valued are distinguished.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2005, pp. 89–101.Original Russian Text Copyright © 2005 by Mikhailov.  相似文献   

3.
Decomposition of Turbulent Velocity Fields in an SI Engine   总被引:3,自引:0,他引:3  
In this study, the turbulence filter, the phase averaging and the proper orthogonal decomposition methods are used to decompose experimentally measured turbulent velocity fields in an SI engine. The radial and circumferential turbulent velocity fields were measured using hot wire anemometer under motored conditions at different engine configurations. The decomposed results of each technique are compared with each other. In addition, the obtained organized and turbulence motions and their energy spectra are examined. Finally, coherent structures of velocity fields and their activities are investigated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
In this paper we report an experimental investigation of various statistical properties of the spatial Fourier modes of the vorticity field in turbulent jets for a large range of Reynolds numbers (530 ≤R λ≤ 6100). The continuous time evolution of a spatial Fourier mode of the vorticity distribution, characterized by a well-defined wavevector, is obtained from acoustic scattering measurements. The spatial enstrophy spectrum, as a function of the spatial wave-vector, is determined by scanning the incoming sound frequencies. Time-frequency analysis of the turbulent vorticity fluctuations is also performed for different length scales of the flows. Vorticity time-correlations show that the characteristic time of a Fourier mode behaves as the sweeping time. Finally, we report preliminary Lagrangian velocity measurements obtained using acoustic scattering by soap bubbles inflated with helium. Gathering a large number of passages of isolated bubbles in the scattering volume, one is able to compute the Lagrangian velocity PDF and velocity spectrum. Despite the spatial filtering due to the finite size of the bubble, the latter exhibits a power law, with the -2 exponent predicted by the Kolmogorov theory, over one decade of frequencies.  相似文献   

5.
6.
The work presented in this paper details the implementation of a new technique for the measurement of local burning velocity using asynchronous particle image velocimetry. This technique uses the local flow velocity ahead of the flame front to measure the movement of the flame by the surrounding fluid. This information is then used to quantify the local burning velocity by taking into account the translation of the flame via convection. In this paper the developed technique is used to study the interaction between a flame front and a single toroidal vortex for the case of premixed stoichiometric methane and air combustion. This data is then used to assess the impact of vortex structure on flame propagation rates. The burning velocity data demonstrates that there is a significant enhancement to the rate of flame propagation where the flame directly interacts with the rotating vortex. The increases found were significantly higher than expected but are supported by burning velocities (Filatyev et al, Combust Flame 141:1?C21, 2005; Kobayashi et al, Proc Combust Inst 29:1793?C1800, 2002; Shepherd et al. 1998) found in turbulent flames of the same mixture composition. Away from this interaction with the main vortex core, the flame exhibits propagation rates around the value recorded in literature for unperturbed laminar combustion (Tahtouh et al, Combust Flame 159:1735?C1743, 2009; Hassan et al, Combust Flame 115:539?C550, 1998); Halter et al, Proc Combust Inst 30:201?C208, 2005; Coppens et al, Exp Therm Fluid Sci 31:437?C444, 2007).  相似文献   

7.
The calculation of Lagrangian statistics out of experimentally determined data from homogeneously seeded inhomogeneous turbulent flows is far from straightforward since statistical properties are position-dependent, necessitating local sampling. Two solutions for the preferential sampling of faster particles at a certain position in the flow are proposed. The performance of both methods was tested using DNS calculations for turbulent pipe flow. Both methods show a good performance for various statistical properties, thus providing two reliable ways to analyze experimental data from inhomogeneous turbulent flows.  相似文献   

8.
One-point time-averaged velocity correlations and joint probability density functions (p.d.f.s) are analyzed with a multi-step method for steady three-dimensional turbulent boundary layers (3DTBLs). The data are derived from a time series of velocity fluctuations measured along the measurement axes ( 1, 2, 3). The method includes a Monte Carlo (MC) technique in which, firstly, the 3×3 Reynolds stress tensors are diagonalized locally in order to obtain the experimental eigenvalues or principal values and the experimental eigenvectors or principal axes ( 1, 2, 3). Secondly, trial independent p.d.f.s are MC-generated along these are projected from system into and the built-in hypotheses are tested for validity, using stringent self-consistency tests. All p.d.f. investigations are made with “perturbed centered-Gaussians” hypotheses, in which the “centered-Gaussians” are experimentally defined and the “perturbations” are trial drift velocities. Our MC-analysis method [1-3] is applied to the first [4] and second [5] generation “S-duct” experiments performed at the école Polytechnique Fédérale de Lausanne (EPFL). Additionally, two complementary algebraic self-consistency tests are developed for the double and the triple correlations separately. New results in the p.d.f. properties of 3DTBLs are presented, using Kinetic Theory as background. Received 6 November 2001 and accepted 27 August 2002 Published online 28 February 2003 Communicated by J.R. Blake  相似文献   

9.
An experimental characterization of the turbulent flow structure formed downstream of a vertically mounted circular bluff body is performed. Three components of an instantaneous velocity field are measured using the stereo particle image velocimetry technique at the symmetry plane. The average velocity and the turbulent properties are analyzed. The results indicate a recirculation zone consisting of a toroidal vortex with similar dimensions for all Reynolds numbers. The largest turbulent fluctuations are found at the stagnation point region. The observed anisotropy of the normal Reynolds stress components is associated with the stagnation point flow, whereas the cross-correlation component extreme occurs in high strain rate regions. An analysis of the Reynolds tensor anisotropy using the Lumley triangle is performed, revealing that the largest departures from isotropy occur at high shear regions and also within the vortex.  相似文献   

10.
Direct Numerical Simulations (DNS) of a passive scalar in a turbulent channel flow with a normal velocity disturbance on the lower wall are presented for high and low Reynolds numbers. The aim is to reproduce the complex physics of turbulent rough flows without dealing with the geometric complexity. In addition, isothermal walls that cannot be easily assigned in an experiment, are considered. The paper explains the increase of heat transfer through the changes of the velocity and thermal structures. As in real rough flows, the transpiration produces an isotropization of the turbulence near the wall.  相似文献   

11.
The dynamic response of fully premixed flames stabilized in strongly swirled flows undergoing vortex breakdown is investigated with axisymmetric unsteady RANS simulations. The analysis relies on the well known Helmholtz-Hodge decomposition of the velocity field into its irrotational and rotational components. A novel methodology based on the linearization of the progress variable transport equation is developed to determine the separate contribution of these velocity components to the Flame Transfer Function (FTF). Due to the phase delay between the convected tangential velocity and instantaneously propagating axial velocity perturbations, a non-monotonic frequency dependence of the swirl number amplitude downstream the swirl generator is detected. In line with experimental observations, such non-monotonic frequency dependence is found also for the amplitude and phase of the FTF. This behaviour is associated here with rotational velocity perturbations generated by the Central Recirculation Zone (CRZ) generated by the phenomenon of vortex breakdown which, responding in a fashion totally similar to the swirl number perturbation, produces flame surface area fluctuations with the same distribution versus frequency.  相似文献   

12.
13.
Although the burning velocities of fuel-air mixtures have been extensively studied at room temperature and pressure, there is relatively little experimental information available for elevated temperatures and pressures (the so-called engine like conditions). Therefore, the main aim of the present work is to generate accurate experimental burning velocities valid over a range of high unburned gas temperatures and pressures of a variety of mixtures of n-heptane and toluene, varying its proportion by 25% in volume each time. Two experimental combustion facilities have been used and their results compared. One facility consists of a constant volume cylindrical bomb in which Schlieren images can be recorded and used to calculate the flame front development. The second facility is a spherical combustion bomb with centred ignition in which burning velocities are calculated from pressure records by means of a two-zone model. In order to check that the pressure method is reliable, experiments with n-heptane at room temperature and pressure for different equivalence ratios carried out in the spherical combustion bomb were compared with the ones obtained at the same conditions in the cylindrical vessel equipped with the Schlieren technique. Once the validity has been checked, extensive experiments have been carried out for widely varying initial conditions of pressure between 0.3 and 0.7?MPa, temperature between 363?K and 453?K and equivalence ratios from 0.8 to 1.1. Over the ranges studied, by removing the influence of the ignition energy at the earliest stages of combustion and the quenching effects at the later ones, the burning velocities are fitted by a correlation of type $ Cc=Cc_{r}\cdot (T_{ub}/T_{r})^{\varepsilon }\cdot (P/P_{r})^{\beta } $ , where Cc r , ?? and ?? depend on the equivalence ratio. The ranges of validity of the correlations obtained cover from 370?K to 700?K, from 0.3?MPa to 4.5?MPa, and from 0.8 to 1.1 equivalence ratio. A comparison with previous predicted values is also given.  相似文献   

14.
Low-order moments of the increments δu andδv where u and v are the axial and radial velocity fluctuations respectively, have been obtained using single and X-hot wires mainly on the axis of a fully developed pipe flow for different values of the Taylor microscale Reynolds numberR λ. The mean energy dissipation rate〉ε〈 was inferred from the uspectrum after the latter was corrected for the spatial resolution of the hot-wire probes. The corrected Kolmogorov-normalized second-order structure functions show a continuous evolution withR λ. In particular, the scaling exponentζ v , corresponding to the v structure function, continues to increase with R λ in contrast to the nearly unchanged value of ζ u . The Kolmogorov constant for δu shows a smaller rate of increase with R λ than that forδv. The level of agreement with local isotropy is examined in the context of the competing influences ofR λ and the mean shear. There is close but not perfect agreement between the present results on the pipe axis and those on the centreline of a fully developed channel flow. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
This work aims to understand the changes associated with the near-wall streaky structures in a turbulent boundary layer (TBL) where the local skin-friction drag is substantially reduced. The Reynolds number is R e ?? = 1000 based on the momentum thickness or R e τ = 440 based on the friction velocity of the uncontrolled flow. The TBL is perturbed via a local surface oscillation produced by an array of spanwise-aligned piezo-ceramic (PZT) actuators and measurements are made in two orthogonal planes using particle image velocimetry (PIV). Data analyses are conducted using the vortex detection, streaky structure identification, spatial correlation and proper orthogonal decomposition (POD) techniques. It is found that the streaky structures are greatly modified in the near-wall region. Firstly, the near-wall streamwise vortices are increased in number and swirling strength but decreased in size, and are associated with greatly altered velocity correlations. Secondly, the velocity streaks grow in number and strength but contract in width and spacing, exhibiting a regular spatial arrangement. Other aspects of the streaky structures are also characterized; they include the spanwise gradient of the longitudinal fluctuating velocity and both streamwise and spanwise integral length scales. The POD analysis indicates that the turbulent kinetic energy of the streaky structures is reduced. When possible, our results are compared with those obtained by other control techniques such as a spanwise-wall oscillation, a spanwise oscillatory Lorentz force and a transverse traveling wave.  相似文献   

16.
This paper describes an experimental study investigating the non-linear response of lean premixed air/ethylene flames to strong inlet velocity perturbations of two frequencies. The combustor has a centrally-placed bluff body and a short quartz section. The annulus between the bluff body and the flow tube, which also housed the acoustic pressure transducers, allowed the reactants into the combustor. The inlet flow was perturbed using loudspeakers. High speed laser tomography, OH* chemiluminescence and OH Planar Laser Induced Fluorescence (PLIF) have been used for flow visualization, heat release and flame surface density (FSD) measurements respectively. The heat release fluctuations increased initially linearly with inlet velocity amplitude for a single frequency forcing, with saturation occurring after forcing amplitudes of around 15% of the bulk velocity, which was found to occur due to vortex roll up and subsequent flame annihilation. The introduction of energy at the second frequency (i.e, the harmonic) was found to change the vortex formation and shedding frequency, depending on the level of forcing. This resulted in a non-linear flame response transfer function (defined as the amplitude of unsteady heat release divided by the amplitude of velocity perturbation at the fundamental) whose amplitude depended greatly on the amount of harmonic content present in the perturbations. The introduction of higher harmonics reduced the flame annihilation events, which are responsible for saturation, thus reducing non-linearity in the amplitude dependence of the flame response. These results were further verified using sequential time-resolved OH PLIF measurements. The findings from this study suggest that the acoustic response of the flame was mostly due to flame area variation effected by modulation of the annular jet and evolution of the shear layers.  相似文献   

17.
Data collected from several studies of experimental and numerical nature in wall-bounded turbulent flows and in particular in internal flows (channel and pipe flows, Mochizuki and Nieuwstadt [1]) at different Reynolds numbers R +(Ru */ν), indicate that: (i) the peak of the rms-value (normalized by u *) of the streamwise velocity fluctuations (σ u +|peak) is essentially independent of the Reynolds number, (ii) the position of the rms peak value (y +|peak) is weakly dependent of the Reynolds number, (iii) the skewness of the streamwise velocity fluctuations (S u ) is close to zero at the position in which the variance has its peak. A series of measurements of streamwise velocity fluctuations has been performed in turbulent pipe flow with the use of an Ultrasonic Doppler Velocimeter and our results support those reported in [1]. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We present a laboratory experimental investigation of the interaction between the turbulent flow in an open channel and the turbulent flow within its very permeable bed. The bed was composed of uniform-size spheres packed in a cubic pattern. Fluid velocities were measured by Particle Image Velocimetry (PIV), which allowed us to investigate the spatial distribution of the time-averaged flow properties in the zone where they are strongly affected by the geometry of the rough bed. We investigate the effect of bed porosity on these flow properties by comparing the results of two experimental configurations: one with an impermeable bed composed of a single layer of spheres and another with a permeable bed composed of five layers. For the latter case, PIV measurements of velocities were also carried out inside two pores adjacent to the bed surface. This data provides an insight into the mechanisms of momentum transfer between the turbulent open channel flow and the turbulent flow within its very permeable bed.  相似文献   

19.
A new methodology is developed to specify inflow boundary conditions for the velocity field at the nozzle exit planes in turbulent counterflow simulations. The turbulent counterflow configuration consists of two coaxial opposed nozzles which emit highly-turbulent streams of varying species compositions depending on the mode considered. The specification of velocity inflow boundary conditions at the nozzle exits in the counterflow configuration is non-trivial because of the unique turbulence field generated by the turbulence generating plates (TGPs) upstream of the nozzle exits. In the method presented here, a single large-eddy simulation (LES) is performed in a large domain that spans the region between the TGPs of the nozzles, and the time series of the velocity fields at the nozzle exit planes are recorded. To provide inflow boundary conditions at the nozzle exit planes for simulations under other conditions (e.g., different stream compositions, bulk velocity, TGP location), transformations are performed on the recorded time series: the mean and r.m.s. (root-mean-square) quantities of velocity, as well as the longitudinal integral length scale on the centerline, at the nozzle exits in simulations are matched to those observed in experiments, thereby matching the turbulent Reynolds number R e t . The method is assessed by implementing it in coupled large-eddy simulation/probability density function (LES/PDF) simulations on a small cylindrical domain between the nozzle exit planes for three different modes of the counterflow configuration: N 2 vs. N 2; N 2 vs. hot combustion products; and C H 4/N 2 vs. O 2. The inflow method is found to be successful as the first and second moments of velocity from the LES/PDF simulations agree well with the experimental data on the centerline for all three modes. This simple yet effective inflow strategy can be applied to eliminate the computational cost required to simulate the flow field upstream of the nozzle exits. It is also emphasized that, in addition to the predicted time series data, the availability of experimental data close to the nozzle exit planes plays a key role in the success of this method.  相似文献   

20.
用有限元法计算径流式叶轮机械蜗壳的紊流时均流场.有关紊流模型采用K-ε两方程模型,用关于压力p的罚函数方法求解.所得结果可供分析蜗壳流场用.文中方法也可用于计算其他形状的二维通道流动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号