首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this contribution we report studies on enzymatic activity of alpha-chymotrypsin (CHT) upon complexation with cationic cetyltrimethylammonium bromide (CTAB) micelle. With picosecond time resolution, we examined solvation dynamics at the interface of CHT-micelle complex, and rigidity of the binding. We have used 5-(dimethyl amino) naphthalene-1-sulfonyl chloride (dansyl chloride; DC) that is covalently attached to the enzyme at the surface sites. The solvation processes at the surface of CHT in buffer solution are found to be mostly in the sub-50 ps time scale. However, at the interface the solvation correlation function decays with time constant 150 ps (65%) and 500 ps (35%), which is significantly different from those found at the enzyme and micellar surfaces. The binding structure of the enzyme-micelle complex was examined by local orientational motion of the probe DC and compared with the case without micelle. The orientational dynamics of the probe DC in the complex reveals a structural perturbation at the surface sites of CHT upon complexation, consistent with other reported structural studies. We also found possible entanglement of charge transfer dynamics of the probe DC on the measured solvation processes by using time-resolved area normalized emission spectroscopic technique. The interfacial solvation process and complex rigidity elucidate the strong recognition mechanism between CHT and the micelle, which is important to understand the biological function of CHT upon complexation with the micelle.  相似文献   

2.
We report picosecond-resolved measurement of the fluorescence of a well-known biologically relevant probe, dansyl chromophore at the surface of a cationic micelle (cetyltrimethylammonium bromide, CTAB). The dansyl chromophore has environmentally sensitive fluorescence quantum yields and emission maxima, along with large Stokes shift. In order to study the solvation dynamics of the micellar environment, we measured the fluorescence of dansyl chromophore attached to the micellar surface. The fluorescence transients were observed to decay (with time constant approximately 350 ps) in the blue end and rise with similar timescale in the red end, indicative of solvation dynamics of the environment. The solvation correlation function is measured to decay with time constant 338 ps, which is much slower than that of ordinary bulk water. Time-resolved anisotropy of the dansyl chromophore shows a bi-exponential decay with time constants 413 ps (23%) and 1.3 ns (77%), which is considerably slower than that in free solvents revealing the rigidity of the dansyl-micelle complex. Time-resolved area-normalized emission spectroscopic (TRANES) analysis of the time dependent emission spectra of the dansyl chromophore in the micellar environment shows an isoemissive point at 21066 cm-1. This indicates the fluorescence of the chromophore contains emission from two kinds of excited states namely locally excited state (prior to charge transfer) and charge transfer state. The nature of the solvation dynamics in the micellar environments is therefore explored from the time-resolved anisotropy measurement coupled with the TRANES analysis of the fluorescence transients. The time scale of the solvation is important for the mechanism of molecular recognition.  相似文献   

3.
In recent years, the validity of the activation energy barrier crossing model at the micellar surface brings notable controversy (Sen, P.; Mukherjee, S.; Halder, A.; Bhattacharyya, K. Chem. Phys. Lett. 2004, 385, 357-361. Kumbhakar, M.; Goel, T.; Mukherjee, T.; Pal, H. J. Phys. Chem. B 2004, 108, 19246-19254.) in the literature. In order to check the validity of the model by time-resolved solvation of a probe fluorophore, a wider range of temperature must be considered. At the same time, spatial heterogeneity (solubilization) of the probe and structural perturbation of the host micelle should carefully be avoided, which was not strictly maintained in the earlier studies. We report here the solvation dynamics of 4-(dicyanomethylene)-2-methyl-6(p-dimethylamino-styryl) 4H-pyran (DCM) in the SDS micelle at 298, 323, and 348 K. The probe DCM is completely insoluble in bulk water in this wide range of temperature. The size of the micelle at different temperatures using the dynamic light scattering (DLS) technique is found to have insignificant change. The hydration number of the micelle, determined by sound velocity measurements, decreases with increasing temperature. Time-resolved fluorescence anisotropy reveals the retention of the probe in the micellar interface within the temperature range. The average solvation time decreases with increasing temperature. The result of the solvation study has been analyzed in the light of energetics of bound to free water conversion at a constant size and decreasing hydration number at the micellar surface. The solvation process at the micellar surface has been found to be the activation energy barrier crossing type, in which interfacially bound type water molecules get converted into free type molecules. We have calculated Ea to be 3.5 kcal mol-1, which is in good agreement with that obtained by molecular dynamics simulation studies.  相似文献   

4.
In this contribution we report studies of the nature of solvation and resonance energy transfer processes in a reverse micelle (RM) upon encapsulation of a digestive enzyme, alpha-chymotrypsin (CHT). We have used one donor, Coumarin 500 (C500), and three acceptors Rhodamine 123 (R123, cationic), ethidium bromide (EtBr, cationic), and Merocyanine 540 (MC540, anionic). By selectively exciting the donor at the surface of the RM with a proper excitation wavelength we have examined solvation dynamics in the microenvironment. The solvation correlation function in the RM without CHT exhibits single-exponential decay with time constant approximately 660 ps, which is similar to that of the CHT-included RM. However, in the case of CHT-included RM (w(0)=10), the time-resolved anisotropy and spectral linewidth analysis of the surface-bound donor reveal the existence of an annular aqueous channel of thickness approximately 2.5 A between the enzyme surface and the inner surface of the RM. The aqueous channel is a potential host for the water-soluble substrate and also is involved in maintaining the proper functionality of RM encapsulated CHT. The studies use both steady-state and time-resolved fluorescence resonance energy transfer (FRET) techniques to measure donor-acceptor distances in the RM and also emphasize the danger of using steady-state fluorescence quenching as a method in careful estimation of the distances. The local geometrical restriction on the donor and acceptor molecules was estimated from time-resolved polarization (anisotropy) measurements. The time-resolved anisotropy of the donor and acceptor molecules also revealed significant randomization of the relative orientation of transition dipoles of the donor and acceptor, justifying the use of 2/3 as the value of the orientation factor kappa2. These studies attempt to elucidate the excellence of the RM as a nanohost of biological macromolecules.  相似文献   

5.
Solvation dynamics of the fluorescence probe, coumarin 102, in anionic surfactant, sodium alkyl sulfate (C(n)H(2n+1)SO(4)Na; n = 8, 10, 12, and 14), and cationic surfactant, alkyltrimethylammonium bromide (C(n)H(2n+1)N(CH(3))(3)Br; n = 10, 12, 14, and 16), micelle solutions have been investigated by a picosecond streak camera system. The solvation dynamics in the time range of 10(-10)-10(-8) s is characterized by a biexponential function. The faster solvation time constants are about 110-160 ps for both anionic and cationic micelle solutions, and the slower solvation time constants for sodium alkyl sulfate and alkyltrimethylammonium bromide micelle solutions are about 1.2-2.6 ns and 450-740 ps, respectively. Both the faster and the slower solvation times become slower with longer alkyl chain surfactant micelles. The alkyl-chain-length dependence of the solvation dynamics in both sodium alkyl sulfate and alkyltrimethylammonium bromide micelles can be attributed to the variation of the micellar surface density of the polar headgroup by the change of the alkyl chain length. The slower solvation time constants of sodium alkyl sulfate micelle solutions are about 3.5 times slower than those of alkyltrimethylammonium bromide micelle solutions for the same alkyl-chain-length surfactants. The interaction energies of the geometry optimized mimic clusters (H(2)O-C(2)H(5)SO(4)(-) and H(2)O-C(2)H(5)N(CH(3))(3)(+)) have been estimated by the density functional theory calculations to understand the interaction strengths between water and alkyl sulfate and alkyltrimethylammonium headgroups. The difference of the slower solvation time constants between sodium alkyl sulfate and alkyltrimethylammonium bromide micelle solutions arises likely from their different specific interactions.  相似文献   

6.
Ultrafast photoinduced electron transfer (PET) from N,N-dimethylaniline to coumarin dyes in cetyltrimethylammonium bromide (CTAB) micelle is studied using femtosecond upconversion spectroscopy. The rate of PET in a CTAB micelle is found to be highly nonexponential with components much faster (approximately 10 ps) than the slow components of solvation dynamics. The ultrafast components of electron transfer exhibits a bell-shaped dependence on the free energy change which is similar to the Marcus inversion.  相似文献   

7.
The primary steps of photoinduced electron transfer (PET) from N,N-dimethylaniline (DMA) to five coumarin dyes are studied in an anionic micelle [sodium dodecyl sulfate (SDS)] and a neutral micelle [triton X-100 (TX-100)] using femtosecond upconversion. The rate of PET in micelle is found to be highly nonexponential. In both the micelles, PET displays components much faster (approximately 10 ps) than the slow components (180-2900 ps) of solvation dynamics. The ultrafast components of electron transfer exhibit a bell-shaped dependence on the free energy change. This is similar to Marcus inversion. The rates of PET in TX-100 and SDS micelle are, in general, faster than those in cetyltrimethylammonium bromide (CTAB) micelle. In the SDS and TX-100 micelle, the Marcus inversion occurs at -DeltaG0 approximately 0.7 eV which is lower than that (approximately 1.2 eV) in CTAB micelle. Possible causes of variation of PET in different micelles are discussed.  相似文献   

8.
We report a theoretical study of the structure and dynamics of the water layer (the hydration layer) present at the surface of the cationic micelle decyltrimethylammonium bromide (DeTAB) by using atomistic molecular dynamics simulations. The simulated micelle consisted of 47 surfactant molecules (and an equal number of bromide ions), in good agreement with the pioneering light scattering experiments by Debye which found an aggregation number of 50. In this micelle, three partially positively charged methyl groups of each surfactant headgroup face the surrounding water. The nature of the cationic micellar surface is found to play an important role in determining the arrangement of water which is quite different from that in the bulk or on the surface of an anionic micelle, like cesium perfluorooctanoate. Water molecules present in the hydration layer are found to be preferentially distributed in the region between the three partially charged methyl headgroups. It is found that both the translational and rotational motions of water exhibit appreciably slower dynamics in the layer than those in the bulk. The solvation time correlation function (TCF) of bromide ions exhibits a long time component which is found to originate primarily from the interaction of the probe with the micellar headgroups. Thus, the decay of the solvation TCF is controlled largely by the residence time of the probe in the surface. The residence time distribution of the water molecules also exhibits a slow time component. We also calculate the collective number density fluctuation in the layer and find a prominent slow component compared to the similar quantity in the bulk. This slow component demonstrates that water structure in the hydration layer is more rigid than that in the bulk. These results demonstrate that the slow dynamics of hydration layer water is generic to macromolecular surfaces of either polarity.  相似文献   

9.
The photophysical behavior of 3-pyrazolyl-2-pyrazoline derivative (PZ), a newly synthesized biologically active compound has been studied in micellar solutions of anionic sodium dodecyl sulfate (SDS), cationic cetyl trimethylammonium bromide (CTAB) and nonionic p- tert-octylphenoxy polyoxyethanol (Triton X-100, TX-100) micelle using steady state and time-resolved fluorescence spectroscopy technique. Influence of the micelles on the photophysics of PZ has also been investigated using different approaches. The location of the fluorophore PZ in the micelle has been identified by cetyl pyridinium chloride (CpCl) induced fluorescence quenching and micropolarity surrounding that fluorophore in micellar solution. The effect of urea on the steady state fluorescence and relaxation dynamics of the micelle bound probe has also been observed. The results have been interpreted in terms of the model that urea displaces water molecules from the micellar interface and the consequent destabilization leads to the expulsion of the probe molecules from the interfacial region. An attempt has been made to determine probe sensing microviscosities for these micellar microenvironments in the light of average reorientation times of the probe PZ.  相似文献   

10.
Solvation dynamics of 4-(dicyanomethylidene)-2-[p-(dimethylamino)styryl]-6-methyl-4H-pyran (DCM) is studied in a polypeptide-surfactant aggregate consisting of gelatin and sodium dodecyl sulfate (SDS) in potassium dihydrogen phosphate (KP) buffer. The average solvation time (tauS) in gelatin-SDS aggregate at 45 degrees C is found to be 1780 ps, which is about 13 times slower than that in 15 mM SDS in KP buffer at the same temperature. The fluorescence anisotropy decay in gelatin-SDS aggregate is also different from that in SDS micelles in KP buffer. DCM displays negligible emission in the presence of gelatin in aqueous solution. Thus the solvation dynamics in the presence of gelatin and SDS is exclusively due to the probe (DCM) molecules at the gelatin-micelle interface. The slow solvation dynamics is ascribed to the restrictions imposed on the water molecules trapped between the polypeptide chain and micellar aggregates. The critical association concentration (cac) of SDS for gelatin is determined to be 0.5 +/- 0.1 mM.  相似文献   

11.
The recognition of a charged biomolecular surface by an oppositely charged ligand is governed by electrostatic attraction and surface hydration. In the present study, the interplay between electrostatic attraction and hydration at the interface of a negatively charged reverse micelle (RM) at different temperatures has been addressed. Temperature-dependent solvation dynamics of a probe H33258 (H258) at the reverse micellar interface explores the nature of hydration at the interface. Up to 45 degrees C, the environmental dynamics reported by the interface-binding probe H258 becomes progressively faster with increasing temperature and follows the Arrhenius model. Above 45 degrees C, the observed dynamics slows down with increasing temperature, thus deviating from the Arrhenius model. The slower dynamics at higher temperatures is interpreted to be due to increasing contributions from the motions of the surfactant head groups, indicating the proximity of the probe to the interface at higher temperatures. This suggests an increased electrostatic attraction between the ligand and interface at higher temperatures and is attributed to the change in hydration. Densimetric and acoustic studies, indeed, show a drastic increase in the apparent specific adiabatic compressibility of the water molecules present in RMs after 45 degrees C, revealing the existence of a softer hydration shell at higher temperatures. Our study indicates that the hydration layer at a charged interface acts both as physical and energetic barrier to electrostatic interactions of small ligands at the interface.  相似文献   

12.
In this contribution, we report studies on nonspecific protein-DNA interactions of an enzyme protein bovine pancreatic alpha-chymotrypsin (CHT) with genomic DNA (from salmon testes) using two biologically common fluorescent probes: 1-anilinonaphthalene-8-sulfonate (ANS) and 2,6-p-toluidinonaphthalene sulfonate (TNS). TNS molecules that are nonspecifically bound to positively charged basic residues at the surface sites, not in the hydrophobic cavities of the protein, are preferentially displaced upon complexation of TNS-labeled CHT with DNA. The time-resolved fluorescence anisotropy of TNS molecules bound to hydrophobic cavities/clefts of CHT reveals that global tumbling motion of the protein is almost frozen in the protein-DNA complex. A control study on TNS-labeled human serum albumin (HSA) upon interaction with DNA clearly indicates that the ligands in the deep pockets of the protein cannot be displaced by interaction with DNA. We have also found that ANS, which binds to a specific surface site of CHT, is not displaced by DNA. The intactness of the ANS binding in CHT upon complexation with DNA offers the opportunity to measure the distance between the ANS binding site and the contact point of the ethidium bromide (EB)-labeled DNA using the F?rster resonance energy transfer (FRET) technique. Enzymatic activity studies on CHT on a substrate (Ala-Ala-Phe 7-amido-4-methyl coumarin) reveal that the active site of the enzyme remains open for the substrate even in the protein-DNA complex. Circular dichroism (CD) studies on CHT upon complexation with DNA confirm the structural integrity of CHT in the complex. Our studies have attempted to explore an application of nonspecific protein-DNA interactions in the characterization of ligand binding of a protein in solution.  相似文献   

13.
Solvation dynamics of 4-(dicyanomethylene)-2-methyl-6(p-dimethylaminostyryl) 4H-pyran (DCM) has been studied in a dipalmitoyl-phosphatidylcholine (DPPC) vesicle entrapped in a sodium silicate derived sol-gel glass. Solvation dynamics in DPPC in a sol-gel glass is described by two components of 350 +/- 50 ps (50%) and 2300 +/- 200 ps (50%) with a total dynamic Stokes shift of 1300 cm(-1). The fast component (350 ps) is similar to the fast component in a DPPC vesicle in bulk water (320 +/- 50 ps). This component may be ascribed to the dynamics of the water molecules inside the water pool of the vesicle. However, the slow component (2300 +/- 200 ps) is about 2.5 times slower compared to the slow component of solvation dynamics of DCM in a DPPC vesicle in bulk solvent (900 +/- 100 ps). The anisotropy decay of DCM in a DPPC vesicle both in sol-gel glass and in bulk water exhibits a very fast initial decay with a large residual anisotropy, which does not decay in approximately 10 ns. The time scale of anisotropy decay is very different from that of solvation dynamics.  相似文献   

14.
The role of dynamical flexibility at the active site of a proteolytic enzyme alpha-chymotrypsin (CHT) has been correlated with its catalytic activity. The temperature-dependent efficiency of catalysis reveals a bell-shaped feature with a peak at 37 degrees C, the typical body temperature of homeothermal animals. The overall structural integrity of the enzyme in our experimental temperature range has been confirmed from dynamic light scattering (DLS) and circular dichroism (CD) studies. We have followed the dynamical evolution at the active site of CHT with temperature using picosecond-resolved fluorescence anisotropy of anthraniloyl probe (covalently attached to the serine-195 residue) and a substrate mimic (inhibitor) proflavin. The conformational dynamics at the active site is found to have a distinct connection with the enzyme functionality. The conformational flexibility of the enzyme is also evidenced from the compressibility studies on the enzyme. The site selective fluorescence detected circular dichroism (FDCD) studies reveal that the conformational flexibility of the enzyme has an effect on the structural perturbation at the active site. We have also proposed the possible implications of the dynamics in the associated energetics.  相似文献   

15.
Effect of electrostatic interaction on the location of a solubilized molecular probe with ionic character in a supramolecular assembly composed of a triblock copolymer, P123 ((ethylene oxide) 20-(propylene oxide) 70-(ethylene oxide) 20) and a cosurfactant cetyltrimethylammonium chloride (CTAC) in aqueous medium has been studied using steady-state and time-resolved fluorescence measurements. Coumarin-343 dye in its anionic form has been used as the molecular probe. In the absence of the surfactant, CTAC, the probe C343 prefers to reside at the surface region of the P123 micelle, showing a relatively less dynamic Stokes' shift, as a large part of the Stokes' shift is missed in the present measurements due to faster solvent relaxation at micellar surface region. As the concentration of CTAC is increased in the solution, the percentage of the total dynamic Stokes' shift observed from time-resolved measurements gradually increases until it reaches a saturation value. Observed results have been rationalized on the basis of the mixed micellar structure of the supramolecular assembly, where the hydrocarbon chain of the CTAC surfactant dissolves into the nonpolar poly(propylene oxide) (PPO) core of the P123 micelle and the positively charged headgroup of CTAC resides at the interfacial region between the central PPO core and the surrounding hydrated poly(ethylene oxide) (PEO) shell or the corona region. The electrostatic attraction between the anionic probe molecule and the positively charged surface of the PPO core developed by the presence of CTAC results in a gradual shift of the probe in the deeper region of the micellar corona region with an increase in the CTAC concentration, as clearly manifested from the solvation dynamics results.  相似文献   

16.
The triblock copolymer (PEO)20-(PPO)70-(PEO)20 (P123) forms a supramolecular aggregate with sodium dodecyl sulfate (SDS). The solvation dynamics and anisotropy decay of coumarin 480 (C480) in different regions of a P123-SDS aggregate are studied through variation of the excitation wavelength (lambdaex) using femtosecond upconversion. In a P123 micelle, because of the drastic differences in polarity between the hydrophilic corona region (PEO block) and the hydrophobic PPO core, C480 exhibits a pronounced red edge excitation shift (REES) of emission maximum by 24 nm. In the P123-SDS aggregate, SDS penetrates the core of the P123 micelle. This increases the polarity of the core and reduces the difference in the polarity between the core and the corona region. In a P123-SDS aggregate, the REES is much smaller (5 nm) which suggests a reduced difference between the core and the corona. Solvation dynamics in a P123 micelle displays a bulklike ultrafast component (<0.3 and 1 ps) in the PEO corona region, a 200 ps component arising from dynamics of polymer segments, and a very long component (5000 or 3000 ps) due to the highly restricted PPO core. In a P123-SDS aggregate, at lambdaex = 375 and 405 nm, the solvation dynamics is found to be faster than that in P123 micelle. In this case, the component (3000 ps) arising from the core region is faster than that (5000 ps) in P123 micelle. In both P123 micelle and P123-SDS aggregate, the relative contribution of the core region decreases and that of the corona region increases with an increase in lambdaex. At lambdaex = 435 nm, which probes the hydrophilic corona, the solvation dynamics for both P123 micelle and P123-SDS aggregate are almost similar.  相似文献   

17.
Cetyltrimethylammonium bromide (CTAB)/potassium bromide (KBr) micellar system has been used as a viscosity probe to study the inclusion complexation between β-cyclodextrin (β-CD) and CTAB. Viscosity measurements show that the inclusion complexation between β-CD and CTAB may cause the breakdown of CTAB/KBr wormlike micelles, resulting in the decrease of the solution viscosity. The viscosity minimum at Cβ-CD/CCTAB=2 indicate the molecular ratio of host molecule to guest molecule is 2:1 in the β-CD/CTAB inclusion complex.  相似文献   

18.
This paper deals with the effect of ethylene glycol on the micelle formation of tetradecyltrimethylammonium bromide. The effect of ethylene glycol addition on the fluorescence anisotropy of several probe molecules residing in different regions of the micelle was investigated to address the solvent penetration in the micelle structure. Fluorescence depolarization measurements were carried out on micellar systems containing two different hydrophobic dyes, namely, perylene and diphenylbutadiene, and a hydrophilic one, fluorescein. The steady-state anisotropy values obtained in these experiments were used to estimate the microviscosity of the corresponding micellar regions. It is observed that the microviscosity in the hydrophobic regions of micelles were roughly constant with EG addition, indicating that the micellar interior does not undergo significant structural changes by the presence of cosolvent in the solution. However, the microviscosity at the micellar surface, as determined by using fluorescein as a probe, is found to increase with EG addition. This perturbation of the micellar surface is ascribed to the solvent penetration in this region of the micelle, where there is probably participation in the solvation layer of the micelle headgroups. Copyright 2000 Academic Press.  相似文献   

19.
Dynamic Stokes' shift measurements using coumarin 153 as the fluorescence probe have been carried out to explore the effect of added electrolyte, lithium chloride (LiCl), on solvation dynamics in the Triton-X-100 (TX-100) micelle and thus to understand the changes in micellar Palisade layer, especially the entrapped water structures in the Palisade layer. At all concentrations of LiCl, the spectral shift correlation function shows biexponential decay. At lower LiCl concentrations, the longer solvation time is seen to decrease, although the shorter solvation time is not affected much. At higher LiCl concentrations, both longer and shorter solvation times increase with electrolyte concentration. The present observations have been rationalized assuming two possible modes of interaction of the Li+ ions in the micellar palisade layer. For LiCl concentrations below about 1.5 M, the Li+ ions appear to bind preferably to the ether groups of surfactant molecules, and the increased micellar hydration with the added salt effectively makes the solvation dynamics faster. At higher LiCl concentrations, available ether binding sites for the Li+ ions seem to get occupied effectively and the excess Li+ ions start remaining in the Palisade layer as strongly hydrated free ions. Because of strong hydration of the Li+ ions, the mobility of the entrapped water molecules in the micellar Palisade layer decreases significantly, causing the solvation dynamics to slow at higher LiCl concentrations. The fluorescence anisotropy results in the present systems are also in support of the above inferences drawn from solvation dynamics results. The present results with LiCl salt are found to be substantially different than those obtained in our earlier study (Kumbhakar et al. J. Phys. Chem. B 2005, 109, 14168) with salts such as NaCl, KCl, and CsCl. These differences are attributed mainly to the binding of the Li+ ions with the surfactant ether groups, which seems to be unlikely for the other alkali cations.  相似文献   

20.
Enzymatic activity of a proteolytic enzyme Subtilisin Carlsberg (SC) in anionic sodium dodecyl sulfate (SDS) micellar medium has been explored and found to be retarded compared to that in bulk buffer. Circular dichroism (CD) study reveals that SDS, which is a potential protein denaturant, has an insignificant denaturation effect on SC. The structural integrity of the protein offers an opportunity to study the functionality of the enzyme SC in a macromolecular crowding of micelles. Dynamic light scattering (DLS) data indicates no sandwich-like micelle-SC complex formation ruling out the possibility of interaction of the enzyme with the hydrophobic core of the micelle. However, steady state and time resolved emission studies on specific and nonspecific fluorescent probes indicate the proximity effect at the surface of the enzyme due to macromolecular crowding of the micelles. The agreement of retarded enzymatic activity in the micellar crowd with a theoretical model ascribed to the facts that substrates are compartmentalized in the micelles and enzyme interacts with the micelle through stern layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号