首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Photocatalytic hydrogen production over CuO-modified titania   总被引:2,自引:0,他引:2  
Efficient hydrogen production and decomposition of glycerol were achieved on CuO-modified titania (CuO-TiO(2)) photocatalysts in glycerol aqueous solutions. CuO clusters were deposited on the titania surface by impregnation of Degussa P25 TiO(2) powder (P25) with copper nitrate followed by calcination. The resulting CuO-TiO(2) composite photocatalysts were characterized by X-ray diffraction (XRD), UV-visible spectrophotometry, X-ray photoelectron spectroscopy (XPS), N(2) adsorption-desorption, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. The low-power ultraviolet light emitting diodes (UV-LED) were used as the light source for photocatalytic H(2)-production reaction. A detailed study of CuO effect on the photocatalytic H(2)-production rates showed that CuO clusters can act as an effective co-catalyst enhancing photocatalytic activity of TiO(2). The optimal CuO content was found to be 1.3 wt.%, giving H(2)-production rate of 2061 μmolh(-1)g(-1) (corresponding to the apparent quantum efficiency (QE) of 13.4% at 365 nm), which exceeded the rate of pure TiO(2) by more than 129 times. The quantum size effect of CuO clusters is deemed to alter its energy levels of the conduction and valence band edges in the CuO-TiO(2) semiconductor systems, which favors the electron transfer and enhances the photocatalytic activity. This work shows not only the possibility of using CuO clusters as a substitute for noble metals in the photocatalytic H(2)-production but also demonstrates a new way for enhancing hydrogen production activity by quantum size effect.  相似文献   

2.
The production of H(2) by photocatalytic water splitting has attracted a lot attention as a clean and renewable solar H(2) generation system. Despite tremendous efforts, the present great challenge in materials science is to develop highly active photocatalysts for splitting of water at low cost. Here we report a new composite material consisting of TiO(2) nanocrystals grown in the presence of a layered MoS(2)/graphene hybrid as a high-performance photocatalyst for H(2) evolution. This composite material was prepared by a two-step simple hydrothermal process using sodium molybdate, thiourea, and graphene oxide as precursors of the MoS(2)/graphene hybrid and tetrabutylorthotitanate as the titanium precursor. Even without a noble-metal cocatalyst, the TiO(2)/MoS(2)/graphene composite reaches a high H(2) production rate of 165.3 μmol h(-1) when the content of the MoS(2)/graphene cocatalyst is 0.5 wt % and the content of graphene in this cocatalyst is 5.0 wt %, and the apparent quantum efficiency reaches 9.7% at 365 nm. This unusual photocatalytic activity arises from the positive synergetic effect between the MoS(2) and graphene components in this hybrid cocatalyst, which serve as an electron collector and a source of active adsorption sites, respectively. This study presents an inexpensive photocatalyst for energy conversion to achieve highly efficient H(2) evolution without noble metals.  相似文献   

3.
Novel ternary composite photocatalysts have been successfully prepared by TiO₂ nanofibers, reduced graphene oxide, and CdS nanoparticles (TiO₂/rGO/CdS) by using electrospinning technique with easy chemical methods. The structures and their properties are examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscope (FESEM). The structural characterization of the composite reveals that pure TiO₂ NFs and CdS NPs crystalline very well and the reduced graphene oxide is tightly composed with TiO₂ NFs and CdS Nps. The photodegradation of methyl orange (MO) under UV light illumination is significantly enhanced compared with that of bare materials. This ternary composite degrades methyl orange within 75 min. The enhanced photocatalytic degradation performance resulted from effective separation of e–h pairs with rGO sheets and also contributed for high rate degradation efficiency. This novel ternary composite has a potential application of wastewater purification and utilization for energy conversions.  相似文献   

4.
This communication presents our recent results that the activity of photocatalytic H2 production can be significantly enhanced when a small amount of MoS2 is loaded on CdS as cocatalyst. The MoS2/CdS catalysts show high rate of H2 evolution from photocatalytic re-forming of lactic acid under visible light irradiation. The rate of H2 evolution on CdS is increased by up to 36 times when loaded with only 0.2 wt % of MoS2, and the activity of MoS2/CdS is even higher than those of the CdS photocatalysts loaded with different noble metals, such as Pt, Ru, Rh, Pd, and Au. The junction formed between MoS2 and CdS and the excellent H2 activation property of MoS2 are supposed to be responsible for the enhanced photocatalytic activity of MoS2/CdS.  相似文献   

5.
CdS-sensitized Pt/TiO(2) nanosheets with exposed (001) facets were prepared by hydrothermal treatment of a Ti(OC(4)H(9))(4)-HF-H(2)O mixed solution followed by photochemical reduction deposition of Pt nanoparticles (NPs) on TiO(2) nanosheets (TiO(2) NSs) and chemical bath deposition of CdS NPs on Pt/TiO(2) NSs, successively. The UV and visible-light driven photocatalytic activity of the as-prepared samples was evaluated by photocatalytic H(2) production from lactic acid aqueous solution under UV and visible-light (λ ≥ 420 nm) irradiation. It was shown that no photocatalytic H(2)-production activity was observed on the pure TiO(2) NSs under UV and/or visible-light irradiation. Deposition of CdS NPs on Pt/TiO(2) NSs caused significant enhancement of the UV and visible-light photocatalytic H(2)-production rates. The morphology of TiO(2) particles had also significant influence on the visible-light H(2)-production activity. Among TiO(2) NSs, P25 and the NPs studied, the CdS-sensitized Pt/TiO(2) NSs show the highest photocatalytic activity (13.9% apparent quantum efficiency obtained at 420 nm), exceeding that of CdS-sensitized Pt/P25 by 10.3% and that of Pt/NPs by 1.21%, which can be attributed to the combined effect of several factors including the presence of exposed (001) facets, surface fluorination and high specific surface area. After many replication experiments of the photocatalytic hydrogen production in the presence of lactic acid, the CdS-sensitized Pt/TiO(2) NSs did not show great loss in the photocatalytic activity, confirming that the CdS/Pt/TiO(2) NSs system is stable and not photocorroded.  相似文献   

6.
目前,在可见光照射下光催化产氢是一条解决能源短缺的理想途径.该途径实现工业化的两个关键因素是得到低成本的光催化剂和高的产氢效率.非贵金属助催化剂代替贵金属可大大降低光催化剂的成本.通过简单的方法大规模合成并组装半导体和非贵金属助催化剂以形成复合光催化剂可进一步降低成本.本文采用大规模和低成本的共沉淀法合成了磷化物/CdS光催化剂,实现了光催化产氢.当负载CoP和Mo P助催化剂后,光催化产氢活性得到大幅度提高.其中CoP/CdS和Mo P/CdS的最佳产氢量分别为140和78μmol/h,并分别为CdS的7.0倍和4.0倍,分别为Pt/CdS的2.0倍和1.1倍.这说明磷化物CoP和Mo P是具有优良催化活性的低成本非贵金属助催化剂,可以代替贵金属助催化剂应用在光催化产H_2中.在制备磷化物/CdS时,先将两种磷化物反应原料分别在水热反应釜和马弗炉中煅烧合成前驱体,再分别在管式炉氮气和氢气氛围中进行磷化得到磷化物Mo P和CoP.然后,将得到的Mo P和CoP分别溶解在Cd(NO_3)_2·4H_2O溶液中,在搅拌状态下逐滴加入Na_2S溶液形成沉淀,即可得到复合物磷化物/CdS.CoP/CdS和Mo P/CdS的HRTEM观察显示,磷化物助催化剂与CdS半导体紧密结合,证明了共沉淀法制备助催化剂/半导体复合光催化剂的有效性.磷化物与CdS的紧密结合促进了光激发电子从CdS向磷化物转移,从而大大提高了光催化产氢活性.这项工作为低成本大规模制备光催化剂和光催化产H_2实现工业化提供了一条可行性思路.  相似文献   

7.
以氧化石墨烯和CdS为原料, 在乙醇水溶液中采用CdS光催化还原法制备了CdS/石墨烯复合光催化材料, 并用透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)和瞬态光电流等技术对复合材料的结构和光电性能进行了表征. 可见光照射下(λ≥420 nm), 研究了该复合材料光催化分解水产氢的性能. 结果表明, 可见光照射下CdS的光生电子可有效地还原氧化石墨烯, 得到CdS与石墨烯之间具有强相互作用力的CdS/石墨烯复合材料. 与CdS相比, 复合材料中石墨烯作为良好的电子受体和传递介质, 可明显加快CdS光生电子的迁移速率, 提高光生载流子的分离效率, 从而增强复合材料的光电性能和光催化分解水产氢的活性.  相似文献   

8.
Photocatalytic activity of TiO2 nanoparticles in the visible light region was enhanced. TiO2–CdSe and TiO2–CdSe/CdS nanohybrids were supported on the reduced graphene oxide. These nanohybrid materials were applied as photocatalyst toward oxidation of aromatic alcohols under a mild condition and the molecular oxygen as oxidant. A plausible mechanism for the photocatalytic oxidation was also proposed. Desired nanohybrids were obtained via in situ fixation of CdSe/CdS on the surface of nanosheets of reduced graphene oxide (rGO). Finally, it was modified by TiO2 sol nanoparticles through a hydrothermal method. The obtained nanomaterials, were characterized by SEM, TEM imaging, XRD, EDAX, DRS and XPS analyses. The size of nanohybrids materials were distributed mostly in a narrow range of 50–65 and 60–75 nm for TiO2–rGO–CdSe and TiO2–rGO–CdSe/CdS, respectively. These photocatalysts showed high catalytic activity under visible light irradiation in a short reaction time and even higher selectivity rather than UV irradiation. The yield of catalytic oxidation increased at least 25–30% for TiO2–CdSe/CdS on rGO, which could be related to its higher light sensitivity and lower energy band gap. The photocatalysts were recycled and reused 8 times without significant loss of their activities due to their stability under visible light.  相似文献   

9.
光催化分解水产氢是利用太阳能解决当今能源危机和环境污染问题的理想策略.硫化镉光催化剂由于具有较窄的带隙、有效的光吸收能力、较负的导带位置和较强的还原能力等而受到广泛关注.然而,硫化镉光催化剂的光生电子-空穴复合速率高,导致其光催化活性比较低,因此在光催化领域的应用受到限制.为此,人们采取了很多方法来改善硫化镉光催化剂的光催化性能,例如加入助催化剂、构建异质结、表面修饰以及形成固溶体光催化剂等.合成固溶体光催化剂被认为是提高硫化镉光催化活性最具有发展前景的方法之一,固溶体光催化剂通过形成轨道杂化而表现出可控的带隙和带边位置.在固溶体光催化剂中,锌镉硫胶体量子点引起了很多关注.锌镉硫胶体量子点的颗粒尺寸较小,这就使得光生电子和空穴由催化剂内部转移到表面的距离较短,增大了载流子分离效率.另外,锌镉硫胶体量子点具有较负的导带位置、可调控的带隙、较好的水中分散性以及良好的光吸收等优点,因此锌镉硫胶体量子点从其他光催化剂中脱颖而出.本文分别采用热注法和传统共沉淀法制备了油溶性锌镉硫量子点和水溶性锌镉硫纳米颗粒.发现油溶性量子点亲水性能较差,几乎没有光催化活性,但油溶性量子点易通过配体交换过程转换成水溶性量子点,无机硫作为锌镉硫量子点的表面水溶性配体,可使量子点具有较好的亲水性.通过电化学测试、稳态荧光以及时间分辨荧光测试结果表明,相比于锌镉硫纳米颗粒,水溶性锌镉硫量子点具有更高的电子空穴分离效率.光催化产氢测试发现,在牺牲剂甘油存在的条件下,水溶性锌镉硫量子点的光催化产氢速率(1220μmol g^?1 h^?1)显著提高,约是锌镉硫纳米颗粒产氢速率的10倍.加入助催化剂Ni^2+后,锌镉硫量子点表现出最高的光催化产氢活性(2253μmol g^?1 h^?1),在420 nm灯的光照条件下,表观量子效率达到15.9%.光催化活性的增大主要归因于量子点较小的颗粒尺寸、表面无机硫配体以及助催化剂的添加,这些都有利于载流子的快速分离和转移,降低其复合,延长其寿命,并且加速了产氢动力学,因此提高了水溶性锌镉硫量子点的光催化产氢活性.  相似文献   

10.
Current energy crisis and environmental issues, including depletion of fossil fuels, rapid industrialization, and undesired CO2 emission resulting in global warming has created havoc for the global population and significantly affected the quality of life. In this scenario the environmental problems in the forefront of research priorities. Development of renewable energy resources particularly the efficient conversion of solar light to sustainable energy is crucial in addressing environmental problems. In this regard, the synthesis of semiconductors-based photocatalysts has emerged as an effective tool for different photocatalytic applications and environmental remediation. Among different photocatalyst options available, graphene and graphene derivatives such as, graphene oxide (GO), highly reduced graphene oxide (HRG), and doped graphene (N, S, P, B-HRG) have become rising stars on the horizon of semiconductors-based photocatalytic applications. Graphene is a single layer of graphite consisting of a unique planar structure, high conductivity, greater electron mobility, and significantly very high specific surface area. Besides, the recent advancements in synthetic approaches have led to the cost-effective production of graphene-based materials on a large-scale. Therefore, graphene-based materials have gained considerable recognition for the production of semiconducting photocatalysts involving other semiconducting materials. The graphene-based semiconductors photocatalysts surpasses electron-holes pairs recombination rate and lowers the energy band gap by tailoring the valence band (VB) and conduction band (CB) leading to the enhanced photocatalytic performance of hybrid photocatalysts. Herein, we have summarized the latest developments in designing and fabrication of graphene-based semiconducting photocatalysts using a variety of commonly applied methods such as, post-deposition methods, in-situ binding methods, hydrothermal and/or solvothermal approaches. In addition, we will discuss the photocatalytic properties of the resulting graphene-based hybrid materials for various environmental remediation processes such as; (i) clean H2 fuel production, photocatalytic (ii) pollutants degradation, (iii) photo-redox organic transformation and (iv) photo-induced CO2 reduction. On the whole, by the inclusion of more than 300 references, this review possibly covered in detail the aspects of graphene-based semiconductor photocatalysts for environmental remediation processes. Finally, the review will conclude a short summary and discussion about future perspectives, challenges and new directions in these emerging areas of research.  相似文献   

11.
利用太阳能驱动半导体光催化剂进行光催化降解污染物和产氢被认为是解决环境问题和能源危机最有效的方法之一.在众多的半导体光催化剂中,TiO2因其优异的化学稳定性、环境友好和成本低等优点,在光催化领域具有不可或缺的作用.介孔TiO2由于具有独特的介孔结构,更有利于光催化过程中反应物的吸附和传输.然而,单一TiO2具有较高的光生载流子重组效率和低的光利用率等缺点,导致其光催化活性低.通过负载助催化剂可以增强光吸收、促进光生载流子的分离以及提供更多活性位点,是提高光催化活性的一种有效策略.目前,常用的高效助催化剂主要为贵金属,如Pt,Pd和Au等,但昂贵的价格及稀缺性限制了其在未来的广泛应用.因此,寻找新型的非贵金属助催化剂来提高光催化剂的活性具有重要意义.MXene作为一种新型的二维过渡金属碳化物和/或氮化物,具有丰富的表面亲水性官能团、良好的金属导电性和较高的载流子迁移率等特性,适合用于光催化中作为助催化剂来提高光催化性能.受此启发,本文利用静电自组装策略将介孔TiO2纳米颗粒均匀地固定在Ti3C2MXene助催化剂上,构建了紧密的介孔TiO2/Ti3C2复合材料,并研究其光催化降解甲基橙(MO)和产氢性能.Zeta电位测试结果表明,带有相反表面电荷的介孔TiO2和Ti3C2可以通过静电作用构筑稳定的复合材料.X-射线粉末衍射、拉曼光谱、X-射线光电子能谱(XPS)、透射电子显微镜和高分辨透射电子显微镜等表征也进一步表明,成功制备了介孔TiO2/Ti3C2复合材料.XPS也证明在复合材料中光生电子从TiO2转移到Ti3C2助催化剂上,表明两者之间具有强相互作用.BET测试结果表明,相比单一的介孔TiO2,复合材料具有更大的比表面积和孔体积,可提供更多的活性位点,有利于提高光催化活性.紫外-可见漫反射光谱表明,Ti3C2助催化剂的引入提高了材料的光吸收能力.荧光光谱、时间分辨荧光光谱、光电流密度和电化学阻抗等测试结果表明,复合材料具有优异的光生载流子分离和转移能力.在光催化性能测试中,最佳Ti3C2含量(3wt%)的介孔TiO2/Ti3C2复合材料在40 min内对MO的光催化降解效率可达99.6%,并利用自由基捕获实验和电子自旋共振表征证实了活性物种·O2-和·OH在光催化降解过程中起主要作用.此外,该复合材料也表现出了较好的产氢性能(218.85μmolg-1h-1),约为单一介孔TiO2的5.6倍,且三次循环后仍保持稳定的产氢效率.综上,MXene族材料可以作为一种高效的非贵金属助催化剂应用于光催化领域.  相似文献   

12.
CdS nanoparticles were deposited on a highly stable, two‐dimensional (2D) covalent organic framework (COF) matrix and the hybrid was tested for photocatalytic hydrogen production. The efficiency of CdS‐COF hybrid was investigated by varying the COF content. On the introduction of just 1 wt % of COF, a dramatic tenfold increase in the overall photocatalytic activity of the hybrid was observed. Among the various hybrids synthesized, that with 10 wt % COF, named CdS‐COF (90:10), was found to exhibit a steep H2 production amounting to 3678 μmol h?1 g?1, which is significantly higher than that of bulk CdS particles (124 μmol h?1 g?1). The presence of a π‐conjugated backbone, high surface area, and occurrence of abundant 2D hetero‐interface highlight the usage of COF as an effective support for stabilizing the generated photoelectrons, thereby resulting in an efficient and high photocatalytic activity.  相似文献   

13.
CdS nanoparticles, prepared in reverse micellar system, were immobilized onto thiol-modified aluminosilicate particles (ASSH) by a simple operation: addition of ASSH in the micellar solution and mild stirring. The resulting CdS nanoparticles-aluminosilicate composites (ASCdS) were used as photocatalysts for H2 generation from 2-propanol aqueous solution. The chemical properties of the aluminosilicate, such as affinity for water and other reactants, were found to affect the photocatalytic property of the CdS nanoparticles immobilized. Zeolite particles, having affinity for water and 2-propanol, gave a good ASCdS photocatalyst with respect to H2 generation.  相似文献   

14.
为提高太阳能转化效率, 高效响应可见光的光催化剂的研究十分必要. 本研究以硫化镉、氯化钯、醋酸镍和硫脲为原料, 利用水热法制备了NiS-PdS/CdS复合光催化剂. 通过X射线衍射(XRD)、紫外-可见光漫反射光谱(DRS)、透射电子显微镜(TEM)和光致发光(PL)光谱等手段对光催化剂进行了表征, 并在乳酸牺牲剂中对光解水制氢活性进行了测试. 结果表明: 助催化剂NiS 和PdS 能较好地分布在CdS 表面上, 形成共负载的NiS-PdS/CdS 光催化剂, 其可见光下的活性比CdS明显增强, 当NiS 和PdS 负载量分别在1.5%和0.41%(w)时, NiS-PdS/CdS获得最好活性, 最大产氢量达到6556 μmol·h-1, 是CdS活性的7倍, 是NiS/CdS的近3倍, 测得在λ=420 nm时的表观量子效率为47.5%. 助催化剂NiS 和PdS分别起到传递光生电子和光生空穴的作用,两者共负载相比于单独负载, 能使光生载流子的迁移和分离效率更高, 因此提高了光催化产氢活性.  相似文献   

15.
马松  徐兴民  谢君  李鑫 《催化学报》2017,(12):1970-1980
光催化产氢技术是目前解决能源和环境问题的最有潜力的方法之一,因此制备安全高效的光催化剂已成为目前的研究热点.在目前研究的各种光催化剂中,CdS光催化剂因为具有较窄的带隙(2.4 eV)和合适的导带位置,所以在可见光催化产氢领域受到广泛关注.然而,光生电子/空穴对易复合和光腐蚀作用极大地限制了CdS光催化剂的放大应用.因此,人们采用众多改性策略以提高CdS光催化剂的可见光产氢活性,其中构建CdS纳米结构和负载助催化剂被认为是最有效的方式.构建CdS纳米结构既可以缩短载流子的迁移路径,也可以减少CdS晶体中的缺陷.很多不同纳米结构的CdS光催化剂已经被开发,例如纳米线、纳米颗粒和纳米棒等.因为制备过程极为复杂繁琐,所以CdS纳米片的研究鲜见报道.本文采用乙酸鎘和硫脲为原材料,通过简单的溶剂热法合成了CdS纳米片.在CdS的各类助催化剂中,由于常用的Pt,Ag和Au等贵金属的高成本和低储量等问题严重限制了它们的实际应用,所以近年来众多非贵金属助催化剂(例如MoS_2,WS2,NiS,NiO和WC等)得到了广泛关注.由于非贵金属助催化剂存在弱电导率和低功函数等问题,影响了对光生电子的收集和利用.纳米碳材料具有极高的电导率、强可见光吸收、有效的载流子分离和较多的反应位点等优点,因此组合纳米碳材料和非贵金属助催化剂被认为是一种有效的解决方案.本文首次采用炭黑和NiS_2作为双助催化剂改性CdS纳米片,通过简单的溶剂热/沉淀两步法成功合成了廉价高效的CdS/CB/NiS_2三元光催化体系.光催化产氢性能测试表明,CdS-0.5%CB-1%NiS_2展现出最高的光催化效率(166.7μmol h~(-1)),分别是CdS NSs和CdS-1.0%NiS_2的5.16和1.87倍.X射线衍射、高分辨电子显微镜和X射线光电子能谱结果证实了CdS催化剂的片状结构,且炭黑和NiS_2成功负载在CdS纳米片表面.紫外-可见漫反射结果表明,随着炭黑和NiS_2的负载,复合催化剂的吸收边缘产生明显的红移,且对可见光的吸收增强.荧光光谱、阻抗和瞬态光电流曲线测试结果证明,炭黑和NiS_2的加入可以有效地促进光生电子/空穴对分离.极化曲线结果表明,加入炭黑和NiS_2可以降低CdS的产氢过电势,因此加速表面产氢动力学.总之,炭黑和NiS_2之间显著的协同效应极大地提高了可见光吸收,促进光生电子/空穴对分离,加速表面产氢动力学,最终得到了三元光催化体系极高的光催化产氢活性.  相似文献   

16.
A nanoarchitectural approach based on in situ formation of quantum dots (QDs) within/outside clay nanotubes was developed. Efficient and stable photocatalysts active under visible light were achieved with ruthenium-doped cadmium sulfide QDs templated on the surface of azine-modified halloysite nanotubes. The catalytic activity was tested in the hydrogen evolution reaction in aqueous electrolyte solutions under visible light. Ru doping enhanced the photocatalytic activity of CdS QDs thanks to better light absorption and electron–hole pair separation due to formation of a metal/semiconductor heterojunction. The S/Cd ratio was the major factor for the formation of stable nanoparticles on the surface of the azine-modified clay. A quantum yield of 9.3 % was reached by using Ru/CdS/halloysite containing 5.2 wt % of Cd doped with 0.1 wt % of Ru and an S/Cd ratio of unity. In vivo and in vitro studies on the CdS/halloysite hybrid demonstrated the absence of toxic effects in eukaryotic cells and nematodes in short-term tests, and thus they are promising photosensitive materials for multiple applications.  相似文献   

17.
Photocatalytic hydrogen production from water splitting is of promising potential to resolve the energy shortage and environmental concerns. During the past decade, carbon materials have shown great ability to enhance the photocatalytic hydrogen-production performance of semiconductor photocatalysts. This review provides a comprehensive overview of carbon materials such as CNTs, graphene, C60, carbon quantum dots, carbon fibers, activated carbon, carbon black, etc. in enhancing the performance of semiconductor photocatalysts for H2 production from photocatalytic water splitting. The roles of carbon materials including supporting material, increasing adsorption and active sites, electron acceptor and transport channel, cocatalyst, photosensitization, photocatalyst, band gap narrowing effect are explicated in detail. Also, strategies for improving the photocatalytic hydrogen-production efficiency of carbon-based photocatalytic materials are discussed in terms of surface chemical functionalization of the carbon materials, doping effect of the carbon materials and interface engineering between semiconductors and carbon materials. Finally, the concluding remarks and the current challenges are highlighted with some perspectives for the future development of carbon-based photocatalytic materials.  相似文献   

18.
利用半导体光催化分解水产氢是将太阳能转换为化学能最有前景的方法之一.在众多的半导体光催化剂中,硫化镉(CdS)不仅具有可见光响应的带隙值(约2.4 eV),而且其导带底和价带顶的能级横跨于水的氧化还原电势两端,能够在可见光照射下分解水产氢,这使得CdS成为一种热门的光催化剂而被广泛研究.然而,单一CdS由于光生电子?空...  相似文献   

19.
崔言娟 《催化学报》2015,(3):372-379
以硫氰酸铵和氯化镉为原料,采用无模板混合高温煅烧法一步合成氮化碳/硫化镉纳米晶(C3N4/CdS)的复合半导体材料。采用X射线衍射、傅立叶变换红外光谱和透射电镜等技术对其结构和形貌进行了表征。以有机污染物罗丹明B (RhB)为模拟污染物对复合催化剂的可见光催化活性进行测试。结果表明, C3N4/CdS复合材料中CdS以六方相纳米晶的形式均匀分散; CdS的复合基本不改变C3N4主体结构及聚合度;与纯C3N4相比,复合材料在可见区的光吸收能力有所增强。合适的能带匹配有利于光生载流子的迁移,抑制了其复合速率。在可见光照射下,复合半导体能够更加快速的降解有机污染物,且保持很好的稳定性。  相似文献   

20.
太阳光驱动的光催化分解水产氢是利用太阳能解决当前能源危机和环境问题的理想策略.二氧化钛由于其稳定、环境友好和成本低等优点受到广泛研究,在光催化领域具有不可或缺的作用.然而,纯二氧化钛光催化剂具有光生电子-空穴复合率高、太阳能利用率低等缺点,使其在光催化产氢领域的应用受到限制.迄今为止,人们探索了多种改性策略来提高二氧化钛的光催化活性,如贵金属负载、金属或非金属元素掺杂、构建异质结等.通过复合两个具有合适能带排布的半导体来构建异质结可以大大提高光生载流子的分离,被认为是一种有效的解决方案.最近提出了一种新的S型异质结概念,以解释不同半导体异质界面载流子转移分离的问题.S型异质结是在传统Ⅱ型和Z型(液相Z型、全固态Z型、间接Z型、直接Z型)基础上提出的,但又扬长避短,优于传统Ⅱ型和Z型.通常,S型异质结是由功函数较小、费米能级较高的还原型半导体光催化剂和功函数较大、费米能级较低的氧化型半导体光催化剂构建而成.三氧化钨禁带宽度较小(2.4-2.8 eV),功函数较大,是典型的氧化型光催化剂,也是构建S型异质结的理想半导体光催化剂.根据S型电荷转移机制,三氧化钨/二氧化钛复合物在光辐照下,三氧化钨导带上相对无用的电子与二氧化钛价带上相对无用的空穴复合,二氧化钛导带上还原能力较强的电子和三氧化钨价带上氧化能力较强的空穴得以保留,从而在异质界面上实现了氧化还原能力较强的光生电子-空穴对的分离.同时,石墨烯作为一种蜂窝状碳原子二维材料,是理想的电子受体,在异质结光催化剂中能及时转移电子.而且,石墨烯具有较好的导热性和电子迁移率,光吸收强,比表面积大,可为光催化反应提供丰富的吸附和活性位点,已经被认为是一种重要催化剂载体和光电分解水产氢的有效共催化剂.本文采用简便的一步水热法制备石墨烯修饰的三氧化钨/二氧化钛S型异质结光催化剂.光催化产氢性能测试表明,三氧化钨/二氧化钛/石墨烯复合材料的光催化产氢速率显著提高(245.8μmol g^-1 h^-1),约为纯TiO2的3.5倍.高分辨透射电子显微镜、拉曼光谱和X射线光电子能谱结果证明了TiO2和WO3纳米颗粒的紧密接触,并成功负载在还原氧化石墨烯(rGO)上.X射线光电子能谱中Ti 2p结合能的增加证实TiO2和WO3之间强的相互作用和S型异质结的形成.此外,复合材料中的rGO大大拓展了复合物的光吸收范围(紫外-可见漫反射光谱),增强了光热转换效应,而且rGO与TiO2之间形成肖特基结,促进了TiO2导带电子的转移和分离.总之,WO3和TiO2的S型异质结与TiO2和rGO之间的肖特基异质结的协同效应抑制了相对有用的电子和空穴的复合,有利于氧化还原能力较强的载流子的分离和进一步转移,加速了表面产氢动力学,于是增强了三元复合光催化剂的光催化产氢活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号