首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports the development and use of a novel thermoresponsive polymeric nanofilm for controlling cell adhesion and growth at 37 °C, and then cell detachment for cell recovery by subsequent temperature drop to the ambient temperature, without enzymatic cleavage or mechanical scraping. A copolymer, poly(N-isopropylacrylamide-co-hydroxypropyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) (abbreviated PNIPAAm copolymer), was synthesized by free radical polymerization. The thermoresponses of the copolymer in aqueous solution were demonstrated by dynamic light scattering (DLS) through detecting the sensitive changes of copolymer aggregation against temperature. The DLS measurements revealed the lower critical solution temperature (LCST) at approximately 30 °C. The PNIPAAm film stability and robustness was provided through silyl cross-linking within the film and with the hydroxyl groups on the substrate surface. Film thickness, stability, and reversibility with respect to temperature switches were examined by spectroscopic ellipsometry (SE), atomic force microscopy (AFM), and contact angle measurements. The results confirmed the high extent of thermosensitivity and structural restoration based on the alterations of film thickness and surface wettability. The effective control of adhesion, growth, and detachment of HeLa and HEK293 cells demonstrated the physical controllability and cellular compatibility of the copolymer nanofilms. These PNIPAAm copolymer nanofilms could open up a convenient interfacial mediation for cell film production and cell expansion by nonenzymatic and nonmechanical cell recovery.  相似文献   

2.
Polymeric micelles based on a thermoresponsive linear-dendritic block copolymer were completely disrupted into unimers upon cooling the solution to a temperature below its LCST and reversibly regenerated upon heating again.  相似文献   

3.
A series of novel triblock copolymers of poly(stearyl methacrylate)-b-poly(N-isopropylacrylamide)-b-poly(stearyl methacrylate) (PSMA-b-PNIPAAm-b-PSMA) with different molecular weights was synthesized through carboxyl-terminated trithiocarbonates as a highly efficient RAFT agent via reversible addition-fragmentation chain transfer (RAFT) polymerization. The resultant polymers were characterized by 1H NMR, FT-IR spectroscopy, and GPC. By varying the organic solvent used in the self-assembly procedure and adjusting the copolymer composition, multiple morphologies ranging from vesicles and core-shell spherical aggregates with different dimensions to pearl-necklace-like aggregates were obtained. The aggregates showed thermoresponsive and pH-responsive properties through the lower critical solution temperature (LCST) of PNIPAAm and the two carboxyl end groups of the copolymer.  相似文献   

4.
Hydrogels based on semi-interpenetrating network (semi-IPN) combining alginate-Ca2+ (matrix) with poly(N-isopropyl acrylamide) (PNIPAAm) were prepared and characterized in order to determine their affinity to water and their permeability to orange II as a function of temperature. Membranes of these hydrogels were obtained by gelation of the aqueous solution of alginate and PNIPAAm by the addition of CaCl2. The presence of PNIPAAm chains inside the hydrogels alters the water affinity when compared to the pure alginate-Ca2+ hydrogels. Although the water uptake capability decreases above 32 °C (Low Critical Solution Temperature (LCST) of PNIPAAm in water), no shrinking of the semi-IPN hydrogels during the phase separation of the PNIPAAm was observed. The permeability of orange II as a function of temperature decreases at 32 °C and shows a dependence on the molar mass of the alginate. The partition coefficient of orange II in the hydrogel membrane, relative to water, decreases by increasing the temperature and its permeability follows a similar behavior. It was proposed that above the LCST of PNIPAAm the Alginate-Ca2+ networks mechanically support the collapsed PNIPAAm chains and the diffusion of orange II is minimized. The collapsing process may be followed by the formation of a complex between the carboxylic side groups of alginate and –NH–R groups of PNIPAAm. It would expose the isopropyl groups of PNIPAAm chains, providing a hydrophobic environment that minimizes the interaction between the dye and the polymeric matrix.  相似文献   

5.
A new atom transfer radical polymerization (ATRP) initiator, namely, 2‐(1‐(2‐azidoethoxy)ethoxy)ethyl 2‐bromo‐2‐methylpropanoate containing both “cleavable” acetal linkage and “clickable” azido group was synthesized. Well‐defined azido‐terminated poly(N‐isopropylacrylamide)s (PNIPAAm‐N3)s with molecular weights and dispersity in the range 11,000–19,000 g mol?1 and 1.20–1.28, respectively, were synthesized employing the initiator by ATRP. Acetal containing PCL‐b‐PNIPAAm block copolymer was obtained by alkyne–azide click reaction of azido‐terminated PNIPAAm‐N3 with propargyl‐terminated PCL. Critical aggregation concentration (CAC) of PCL‐b‐PNIPAAm copolymer in aqueous solution was found to be 8.99 × 10?6 M. Lower critical solution temperature (LCST) of PCL‐b‐PNIPAAm copolymer was found to be 32 °C which was lower than that of the precursor PNIPAAm‐N3 (36.4 °C). The effect of dual stimuli viz . temperature and pH on size and morphology of the assemblies of PCL‐b‐PNIPAAm block copolymer revealed that the copolymer below LCST assembled in spherical micelles which subsequently transformed to unstable vesicles above the LCST. Heating these assemblies above 40 °C led to the precipitation of PCL‐b‐PNIPAAm block copolymer. Whereas, at decreased pH, micelles of PCL‐b‐PNIPAAm copolymer disintegrate due to the cleavage of acetal linkage and precipitation of hydrophobic hydroxyl‐terminated PCL. The encapsulated pyrene release kinetics from the micelles of synthesized PCL‐b‐PNIPAAm copolymer was found to be faster at higher temperature and at lower pH. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1383–1396  相似文献   

6.
In this research, thermoresponsive copolymer latex particles with an average diameter of about 200–500 nm were prepared via surfactant‐free emulsion polymerization. The thermoresponsive properties of these particles were designed by the addition of hydrophilic monomers [acrylic acid (AA) and sodium acrylate (SA)] to copolymerize with N‐isopropylacrylamide (NIPAAm). The effects of the comonomers and composition on the synthesis mechanism, kinetics, particle size, morphology, and thermoresponsive properties of the copolymer latex were also studied to determine the relationships between the synthesis conditions, the particle morphology, and the thermoresponsive properties. The results showed that the addition of hydrophilic AA or SA affected the mechanism and kinetics of polymerization. The lower critical solution temperature (LCST) of the latex copolymerized with AA rose to a higher temperature. However, because the strong hydrophilic and ionic properties of SA caused a core–shell structure, where NIPAAm was in the inner core and SA was in the outer shell, the LCST of the latex copolymerized with SA was still the same as that of pure poly(N‐isopropylacrylamide) latex. It was concluded that these submicrometer copolymer latex particles with different thermoresponsive properties could be applied in many fields. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 356–370, 2006  相似文献   

7.
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPAAm) brushes with different molecular weights M(n) and grafting densities σ were prepared by the "grafting-to" method. Changes in their physicochemical properties according to temperature were investigated with the help of in situ spectroscopic ellipsometry and in situ attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Brush criteria indicate a transition between a brush conformation below the lower critical solution temperature (LCST) and an intermediate to mushroom conformation above the LCST. By in situ ellipsometry distinct changes in the brush layer parameters (wet thickness, refractive index, buffer content) were observed. A broadening of the temperature region with maximum deswelling occurred with decreasing grafting density. The brush layer properties were independent of the grafting density below the LCST, but showed a virtually monotonic behavior above the LCST. The midtemperature ?(half) of the deswelling process increased with increasing grafting density. Thus grafting density-dependent design parameters for such functional films were presented. For the first time, ATR-FTIR spectroscopy was used to monitor segment density and hydrogen bonding changes of these very thin PNIPAAm brushes as a function of temperature based on significant variations of the methyl stretching, Amide I, as well as Amide II bands with respect to intensity and wavenumber position. No dependence on M(n) and σ in the wavenumber shift of these bands above the LCST was found. The temperature profile of these band intensities and thus segment density was found to be rather step-like, exceeding temperatures around the LCST, while the respective profile of their wavenumber positions suggested continuous structural and hydration processes. Remaining buffer amounts and residual intermolecular segment/water interaction in the collapsed brushes above the LCST could be confirmed by both in situ methods.  相似文献   

8.
The thermoresponsive magnetic polymer composites and nanofibers were fabricated. Their thermal and magnetic properties were also investigated. Fe3O4 nanoparticles were prepared by coprecipitation method. Further condensation reaction was used to fabricate the double‐layer lauric acid modified Fe3O4 (DLF) nanoparticles dispersed well in water. Thermal properties of poly(N‐isopropylacrylamide) (PNIPAAm) and DLF/PNIPAAm composites and their aqueous solutions were measured by TGA and DSC. With the increasing of DLF content, the interaction between DLF and PNIPAAm caused the lower critical solution temperature (LCST) of polymer solution to shift from 33 to 31.25 °C. The effects of concentration and pH on LCST were also studied. The DLF/PNIPAAm nanofibers were fabricated by electrospinning. Their diameters were around 100–250 nm. Magnetization curves of DLF/PNIPAAm composite and nanofibers were overlapped and the saturated magnetizations were the same. Magnetic attraction behaviors of DLF/PNIPAAm polymer solution at temperatures below and above LCST were different. Aggregation of DLF/PNIPAAm above LCST enhanced magnetic moment density as well as magnetic attraction ability. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 848–856  相似文献   

9.
Shell cross-linked (SCL) thermoresponsive hybrid micelles consisting of a cross-linked thermoresponsive hybrid hydrophilic shell and a hydrophobic core domain were synthesized from poly(N-isopropylacrylamide-co-3- (trimethoxysilyl)propyl methacrylate)-b-polymethyl methacrylate (P(NIPAAm-co-MPMA)-b-PMMA) amphiphilic block copolymers. Transmission electron microscopy (TEM) images showed that the SCL micelles formed regularly globular nanoparticles. The SCL micelles showed reversible dispersion/aggregation in response to temperature cycles through an outer polymer shell lower critical solution temperature (LCST) for PNIPAAm at around 33 degrees C, observed by turbidity measurements and dynamic light scattering (DLS). The drug loading and in vitro drug release properties of the SCL micelles bearing a silica-reinforced PNIPAAm shell were further studied, which showed that the SCL micelles exhibited a much improved entrapment efficiency (EE) as well as a slower release rate which allowed the entrapped molecules to be slowly released over a much longer period of time as compared with pure PNIPAAm-b-PMMA micelles.  相似文献   

10.
Thermosensitive inorganic-organic hybrid polymers and gels can be used for controlled molecular transport in a variety of applications that require robust, mechanically stable materials. Silica and poly(N-isopropylacrylamide) (PNIPAAm) precursors were copolymerized in the presence of surfactant supramolecular assemblies to form hybrid gels with ordered nanostructure. This method was less complicated and results in enhanced reversible transport properties compared to previous approaches noted herein. In this study, the thermoresponsive polymer, PNIPAAm, was incorporated into polymerizing silica networks using the coupling agent 3-methacryloxypropyltrimethoxysilane. The hydration transition of PNIPAAm associated with its lower critical solution temperature (LCST) in aqueous solution was retained in the hydrated silica matrices and was used to control the permeability of membranes and molecular release behavior of particles. This report presents new methods for formation of hybrid silica/PNIPAAm membranes and particles, characterization of these materials, and documentation of reversible molecular transport properties of these new hybrid materials.  相似文献   

11.
以巯基乙胺盐酸盐(AESH)为链转移剂、2,2'-偶氮二异丁腈为引发剂,合成了具有端氨基的聚(N-异丙基丙烯酰胺)(PNIPAAm);与甲基丙烯酰氯反应,得到可聚合的PNIPAAm大分子单体;进而与丙烯腈共聚,合成了丙烯腈-N-异丙基丙烯酰胺接枝共聚物(P(AN-g-NIPAAm)).基于浸没沉淀相转化法制备了聚丙烯腈/P(AN-g-NIPAAm)共混膜.红外及核磁分析表明,通过调控AESH的浓度可制备得到不同链长的PNIPAAm大分子单体;用激光光散射进一步测定了共聚物的重均分子量;采用鼓泡接触角及浊度测定考察了共聚物的温敏特性;XPS结果证实PNIPAAm链在膜表面发生富集;纯水压滤实验发现所制备的分离膜40℃(高于PNIPAAm的LCST)时的水通量是25℃(低于PNIPAAm的LCST)时的近2倍,具有较明显的温敏性.  相似文献   

12.
Poly[N‐isopropylacrylamide‐coN‐(3‐methoxypropyl)acrylamide]‐b‐poly(D,L‐lactide) (P(IPAAm‐co‐MPAAm)‐b‐PLA) as a thermoresponsive block copolymer and PMPAAm‐b‐PLA as a nonthermoresponsive block copolymer were co‐assembled into thermoresponsive polymeric micelles in water. In addition, PMPAAm‐b‐P(IPAAm‐co‐MPAAm)‐b‐PLA triblock copolymer was assembled to form thermoresponsive micelles with a hydrophilic layer on the outermost surface of the thermoresponsive corona. Using both micelles, we investigated the effects of introducing hydrophilic polymer segments on micellar aggregation behavior at temperatures above the lower critical solution temperature (LCST) of the thermoresponsive micelles. Despite the external hydrophilic PMPAAm layer on PMPAAm‐b‐P(IPAAm‐co‐MPAAm)‐b‐PLA micelles, aggregation following dehydration of the thermoresponsive segments was not significantly suppressed at temperatures above the LCST due to the instability of the core‐corona state. In contrast, intermicellar aggregation was successfully controlled by blending P(IPAAm‐co‐MPAAm) and PMPAAm in the thermoresponsive corona region, even above the LCST. In particular, PMPAAm chains longer than the P(IPAAm‐co‐MPAAm) chains could regulate the hydrodynamic diameter of micellar aggregates at temperatures above the LCST. The micelles showed enhanced drug release rates in response to temperature changes above the LCST without precipitating from solution. These results indicated that a side‐by‐side structure of hydrophilic/thermoresponsive chains in the corona region could effectively control the micellar aggregation state after a thermal phase transition. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1695–1704  相似文献   

13.
采用2,4,6-三氯-1,3,5-三嗪对四氨基钴酞菁进行改性,并以共价键接枝到聚N-异丙基丙烯酰胺上制得一种新型温敏性高分子催化剂——钴酞菁接枝温敏聚合物,并采用UV-Vis、TG等对其进行表征.对钴酞菁接枝温敏聚合物、温敏聚合物和小分子金属酞菁进行溶解性测试,结果表明与四氨基钴酞菁相比,所合成的钴酞菁接枝温敏聚合物能溶解于水和大多数有机溶剂,且该聚合物水溶液具有良好的温敏性,其最低临界溶解温度(LCST)为34.5℃.采用浊度法考察了不同比例的混合溶剂(乙醇/水、DMF/水)对LCST的影响,结果表明随着有机溶剂含量的增加,LCST先下降后升高,而当有机溶剂增加到一定程度时温敏性消失.本文还考察了钴酞菁接枝温敏聚合物对2-巯基乙醇的催化活性,结果表明随着温度升高,催化活性也不断提高,而当温度超过LCST时催化活性急剧下降,聚合物从溶液中析出.基于这些特性,该温敏聚合物负载酞菁作为一种新型的催化剂可实现均相催化、异相分离.  相似文献   

14.
Layer-by-layer self-assembly was used to prepare thermoresponsive thin films of poly(N-isopropylacrylamide) (PNIPAAm) and poly(acrylic acid) (PAA) based on hydrogen bonding. The temperature of PNIPAAm adsorption was shown to significantly affect both the mass proportion of PNIPAAm in the film and the film surface morphology. When the adsorption was conducted at temperatures close to the lower critical solubility temperature of PNIPAAm, the amount of PNIPAAm in the film increased significantly (from 51 to 59%), and the total film mass increased by 30-40%. The films prepared at 30 degrees C also exhibited a lower surface roughness (1-2 nm) compared with 5-8 nm when prepared at 10 or 21 degrees C. The resulting multilayer films ([PAA/PNIPAAm]10) were capable of being reversibly loaded and unloaded with dye (Rhodamine B) by exposure to solutions at elevated temperatures. The rate of loading and release was shown to depend on both the solution temperature and film preparation temperature, leading to tunable loading/release properties.  相似文献   

15.
陈韩婷  樊晔  方云 《物理化学学报》2001,30(7):1290-1296
从N-异丙基丙烯酰胺(NIPAM)和丙烯酸(AA)单体合成了一种全亲水无规共聚物P(NIPAM-co-AA),实验发现该聚合物在水相中可以产生pH或温度双重刺激响应性自组装. 采用透射电子显微镜(TEM)观察了自组装体的形貌,采用动态光散射(DLS)和静态光散射(SLS)观察了其粒径及粒径分布. 测定了该聚合物水溶液的最低临界溶解温度(LCST)及其zeta 电位随pH的变化,通过分析NIPAM和AA两种链节的质子化状态随温度和pH变化的趋势,阐释了其在水相中产生双重响应性自组装的推动力;并结合傅里叶红外(FT-IR)光谱测定自组装体表面富集基团的结果,进一步阐释了不同环境下自组装体的微结构. 这类全亲水无规共聚物的合成方法简单,具有pH和温度双重响应性,其全水相中的刺激响应性自组装行为在药物释放等方面具有潜在的应用价值.  相似文献   

16.
Recently, there are significant interests in the development of biomaterials with nonlinear response to an external stimulus. Thermoresponsive polymers as a well-known class of stimuli-responsive materials represent reversible hydrophilicity/hydrophobicity characteristics around a critical temperature. This switchable behavior applies for nondestructive cellular detachment from cultivation substrates. In this study, poly (N-isopropylacrylamide) (PNIPAAm)-grafted dishes were made up to harvest retinal pigmented epithelial (RPE) and periodontal ligament cell (PDLC) sheets. Wettability assessments verified that all functionalized surfaces were inverted from hydrophilic to hydrophobic state when the temperature rises from lower critical solution temperature (LCST) at 37 °C. Other physicochemical characteristics such as chemical composition, grafting thickness, and surface topography were investigated through attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscopy (AFM). ATR-FTIR results showed typical peaks of amide group corresponding to successful PNIPAAm polymerization. AFM microscopy results also proved creating a rough PNIPAAm layer with thickness of 29.2 nm after grafting process in the mixture of methanol and water. Cell culture experiments showed an irreversible cellular attachment/detachment from modified surfaces upon temperature changes. These results introduced thermoresponsive TCPS to noninvasively harvest RPE and PDLCs sheets especially for application in scaffold-free tissue engineering decorations. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1567–1576  相似文献   

17.
Linear and crosslinked polymers based on N‐isopropylacrylamide (NIPAAm) exhibit unusual thermal properties. Aqueous solutions of poly(N‐isopropylacrylamide) (PNIPAAm) phase‐separate upon heating above a lower critical solution temperature (LCST), whereas related hydrogels undergo a swelling–shrinking transition at an LCST. A linear copolymer made of NIPAAm/acryloxysuccinimide (98/2 mol/mol) and two hydrogels with different hydrophilicities were prepared. Fourier transform infrared (FTIR) spectroscopy was employed to determine the transition temperature and provide insights into the molecular details of the transition via probing of characteristic bands as a function of temperature. The FTIR spectroscopy method described here allowed the determination of the transition temperature for both the linear and crosslinked polymers. The transition temperatures for PNIPAAm and the gel resulting from the crosslinking with polylysine or N,N′‐methylenebisacrylamide (MBA) were in the same range, 30–35 °C. For the gels, the transition temperature increased with the hydrophilicity of the polymer matrix. The spectral changes observed at the LCST were similar for the free chains and the hydrogels, implying a similar molecular reorganization during the transition. The C H stretching region suggests that the N‐isopropyl groups and the backbone both underwent conformational changes and became more ordered upon heating above the LCST. An analysis of the amide I band suggests that the amide groups of the linear polymer were mainly involved in hydrogen bonding with water molecules below the LCST, the chain being flexible and disordered in a water solution. During the transition, around 20% of these intermolecular hydrogen bonds between the polymer and water were broken and replaced by intramolecular hydrogen bonds. Similar changes were also observed at the LCST of a gel crosslinked with MBA. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 907–915, 2000  相似文献   

18.
用自由基共聚法合成了一系列 β -羟丙酯 ( β -HPAT)和乙烯基吡咯烷酮 (NVP)的共聚物及其水凝胶。发现共聚物的水溶液有敏锐的温敏行为 ,最低汇溶温度 (LCST)随NVP含量的增加而升高 ,随着反应单体总浓度的增加 ,相变敏锐性下降且LCST也随之下降。通过考察水凝胶的溶胀率 (SR) ,发现共聚凝胶在适当的单体浓度 ,交联剂浓度和较宽的单体浓度配比范围内 ,有较灵敏的温敏行为。  相似文献   

19.
The synthesis of a thermoresponsive hydrogel of poly(glycidyl methacrylate‐coN‐isopropylacrylamide) (PGMA‐co‐PNIPAM) and its application as a nanoreactor of gold nanoparticles are studied. The thermoresponsive copolymer of PGMA‐co‐PNIPAM is first synthesized by the copolymerization of glycidyl methacrylate and N‐isopropylacrylamide using 2,2′‐azobis(isobutyronitrile) as an initiator in tetrahydrofuran at 70 °C and then crosslinked with diethylenetriamine to form a thermoresponsive hydrogel. The lower critical solution temperature (LCST) of the thermoresponsive hydrogel is about 50 °C. The hydrogel exists as 280‐nm spheres below the LCST. The diameter of the spherical hydrogel gradually decreases to a minimum constant of 113 nm when the temperature increases to 75 °C. The hydrogel can act as a nanoreactor of gold nanoparticles because of the coordination of nitrogen atoms of the crosslinker with gold ions, on which a hydrogel/gold nanocomposite is synthesized. The LCST of the resultant hydrogel/gold nanocomposite is similar to that of the hydrogel. The size of the resultant gold nanoparticles is about 15 nm. The hydrogel/gold nanocomposite can act as a smart and recyclable catalyst. At a temperature below the LCST, the thermoresponsive nanocomposite is a homogeneous and efficient catalyst, whereas at a temperature above the LCST, it becomes a heterogeneous one, and its catalytic activity greatly decreases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2812–2819, 2007  相似文献   

20.
贺晓凌  王金燕  肖飞  陈莉 《高分子学报》2009,(12):1274-1281
利用自由基聚合法合成了半乳糖糖化温敏凝胶(P(NIPAAm-co-GAC))和壳聚糖糖化温敏凝胶(P(NIPAAm-co-CSA)),对其温度响应性和溶胀性能进行了研究,结果表明,两种糖化温敏凝胶在水中和细胞培养基中均显示较好的温度响应性,以及比聚(N-异丙基丙烯酰胺)温敏凝胶(PNIPAAm)更好的溶胀性能.进一步研究人肝肿瘤细胞(HepG2)在凝胶表面的细胞行为发现,HepG2在P(NIPAAm-co-GAC)、PNIPAAm凝胶表面吸附量及活性较高,表现出良好的生长趋势,而在P(NIPAAm-co-CSA)凝胶表面吸附量和活性很低,其增殖受到抑制;通过降低环境温度,能使培养在P(NIPAAm-co-GAC)和PNIPAAm凝胶表面的HepG2细胞发生自动脱附,避免了酶解法对细胞功能造成的损伤,并且细胞片层比单个细胞表现出更快的脱附速率;研究细胞转载行为表明,通过温度诱导得到的细胞片层,其生物活性远远大于通过酶解法得到的细胞的生物活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号