首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of the production of fatty acids as essential components of the mycobacterial cell wall has been an established way of fighting tuberculosis for decades. However, increasing resistances and an outdated medical treatment call for the validation of new targets involved in this crucial pathway. In this regard, the β-ketoacyl ACP synthase KasA is a promising enzyme. In this study, three molecular dynamics simulations based on the wildtype crystal structures of inhibitor bound and unbound KasA were performed in order to investigate the flexibility and conformational space of this target. We present an exhaustive analysis of the binding-site flexibility and representative pocket conformations that may serve as new starting points for structure-based drug design. We also revealed a mechanism which may account for the comparatively low binding affinity of thiolactomycin. Furthermore, we examined the behavior of water molecules within the binding pocket and provide recommendations how to handle them in the drug design process. Finally, we analyzed the dynamics of a channel that accommodates the long-chain fatty acid substrates and, thereby, propose a mechanism of substrate access to this channel and how products are most likely released.  相似文献   

2.
蛋白质分子与配体的作用模式主要有直接的环区结合及铰链式结合两种方式。针对这两种不同的作用方式,我们提出采用不同的策略进行结合过程的构象研究。对于直接的环区结合模式,通过建立环区主链构象库,来实现蛋白质环区与配体的准柔性对接,并以链霉抗生物素蛋白体系为例对构象库建立的可行性进行了验证计算。对铰链结合方式,采用分步对接的方法进行计算,并具体应用于HIV蛋白酶与其小分子配体的结合过程。计算结果表明,这两种处理方法分别能较好地模拟不同类型的蛋白质与配体结合的的构象变化。  相似文献   

3.
A series of diphenyl ether derivatives were developed and showed promising potency for inhibiting InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, leading to the lysis of Mycobacterium tuberculosis. To understand the structural basis of diphenyl ether derivatives for designing more potent inhibitors, molecular dynamics (MD) simulations were performed. Based on the obtained results, the dynamic behaviour in terms of flexibility, binding free energy, binding energy decomposition, conformation, and the inhibitor–enzyme interaction of diphenyl ether inhibitors were elucidated. Phe149, Tyr158, Met161, Met199, Val203 and NAD+ are the key residues for binding of diphenyl ether inhibitors in the InhA binding pocket. Our results could provide the structural concept to design new diphenyl ether inhibitors with better enzyme inhibitory activity against M. tuberculosis InhA. The present work facilitates the design of new and potentially more effective anti-tuberculosis agents.  相似文献   

4.
G-quadruplexes are higher-order DNA and RNA structures formed from guanine-rich sequences. These structures have recently emerged as a new class of potential molecular targets for anticancer drugs. An understanding of the three-dimensional interactions between small molecular ligands and their G-quadruplex targets in solution is crucial for rational drug design and the effective optimization of G-quadruplex ligands. Thus far, rational ligand design has been focused mainly on the G-quartet platform. It should be noted that small molecules can also bind to loop nucleotides, as observed in crystallography studies. Hence, it would be interesting to elucidate the mechanism underlying how ligands in distinct binding modes influence the flexibility of G-quadruplex. In the present study, based on a crystal structure analysis, the models of a tetra-substituted naphthalene diimide ligand bound to a telomeric G-quadruplex with different modes were built and simulated with a molecular dynamics simulation method. Based on a series of computational analyses, the structures, dynamics, and interactions of ligand-quadruplex complexes were studied. Our results suggest that the binding of the ligand to the loop is viable in aqueous solutions but dependent on the particular arrangement of the loop. The binding of the ligand to the loop enhances the flexibility of the G-quadruplex, while the binding of the ligand simultaneously to both the quartet and the loop diminishes its flexibility. These results add to our understanding of the effect of a ligand with different binding modes on G-quadruplex flexibility. Such an understanding will aid in the rational design of more selective and effective G-quadruplex binding ligands.  相似文献   

5.
Escherichia coli dihydrofolate reductase (DHFR) is a long-standing target for enzyme studies. The influence of protein motion on its catalytic cycle is significant, and the conformation of the M20 loop is of particular interest. We present receptor-based pharmacophore models-an equivalent of solvent-mapping of binding hotspots-based on ensembles of protein conformations from molecular dynamics simulations of DHFR.NADPH in both the closed and open conformation of the M20 loop. The optimal models identify DHFR inhibitors over druglike non-inhibitors; furthermore, high-affinity inhibitors of E. coli DHFR are preferentially identified over general DHFR inhibitors. As expected, models resulting from simulations with DHFR in the productive conformation with a closed M20 loop have better performance than those from the open-loop simulations. Model performance improves with increased dynamic sampling, indicating that including a greater degree of protein flexibility can enhance the quest for potent inhibitors. This was compared to the limited conformational sampling seen in crystal structures, which were suboptimal for this application.  相似文献   

6.
The ATP-dependent bacterial MurD enzyme catalyses the formation of the peptide bond between cytoplasmic intermediate UDP-N-acetylmuramoyl-L-alanine and D-glutamic acid. This is essential for bacterial cell wall peptidoglycan synthesis in both Gram-positive and Gram-negative bacteria. MurD is recognized as an important target for the development of new antibacterial agents. In the present study we prepared the 3D-stucture of the catalytic pocket of the Staphylococcus aureus MurD enzyme by homology modelling. Extra-precision docking, binding free energy calculation by the MM–GBSA approach and a 40 ns molecular dynamics (MD) simulation of 2-thioxothiazolidin-4-one based inhibitor $1 was carried out to elucidate its inhibition potential for the S. aureus MurD enzyme. Molecular docking results showed that Lys19, Gly147, Tyr148, Lys328, Thr330 and Phe431 residues are responsible for the inhibitor–protein complex stabilization. Binding free energy calculation revealed electrostatic solvation and van der Waals energy components as major contributors for the inhibitor binding. The inhibitor-modelled S. aureus protein complex had a stable conformation in response to the atomic flexibility and interaction, when subjected to MD simulation at 40 ns in aqueous solution. We designed some molecules as potent inhibitors of S. aureus MurD, and to validate the stability of the designed molecule D1-modelled protein complex we performed a 20 ns MD simulation. Results obtained from this study can be utilized for the design of potent S. aureus MurD inhibitors.  相似文献   

7.
The regulation of protein kinases requires flexibility, especially near the ATP binding site. The cancer drug target Aurora A is inhibited by the ATP site inhibitor VX680, and published crystal structures show two distinct conformations. In one, a refolded glycine-rich loop creates a stacked π-π interaction between the conserved aromatic residue of the glycine-rich loop hairpin turn (F144) and the inhibitor. This refolding, associated with binding to a peptide derived from the cofactor TPX2, is absent in the other structure. We use surface plasmon resonance to measure VX680 binding to native and mutant F144A Aurora A kinase domains, with and without the TPX2 peptide. Results show that the F144 aromatic side chain contributes 2 kcal/mol to the VX680 binding energy, independent of the TPX2 peptide. This indicates that distinct VX680 bound conformations of Aurora A cannot be simply correlated with TPX2 binding and that Aurora A retains flexibility when inhibitor-bound. Molecular dynamics simulations show that alternate geometries for the π-π interactions are feasible in the absence of the rigidifying packing interactions seen in the crystal lattice.  相似文献   

8.
Our laboratory has in the past developed a method for the prediction of ligand binding free energies to proteins, referred to as SAFE_p (Solvent free energy predictor). Previously, we have applied this protocol for the prediction of the binding free energy of peptidic and cyclic urea HIV-1 PR inhibitors, whose X-ray structures bound to enzyme are known. In this work, we present the first account of a docking simulation, where the ligand conformations were screened and inhibitor ranking was predicted on the basis of a modified SAFE_p approach, for a set of cyclic urea-HIV-1 PR complexes whose structures are not known. We show that the optimal dielectric constant for docking is rather high, in line with the values needed to reproduce some protein residue properties, like pKa's. Our protocol is able to reproduce most of the observed binding ranking, even in the case that the components of the equation are not fitted to experimental data. Partition of the binding free energy into pocket and residue contributions sheds light into the importance of the inhibitor's fragments and on the prediction of "hot spots" for resistance mutations.  相似文献   

9.
The enzyme MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) catalyzes the first cytoplasmatic step in the synthesis of murein precursors. This function is of vital relevance for bacteria, and the enzyme therefore represents an important target protein for the development of novel antibacterial compounds. Several X-ray structures of liganded and un-liganded MurA have been published, which may be used for rational drug design. MurA, however, contains a highly flexible surface loop, which is involved in substrate and inhibitor binding. In the available X-ray structures, the conformation of this surface loop varies, depending on the presence or absence of ligands or substrate and probably also on the crystal packing. The uncertainty of the low-energy, or "resting state" conformation of this surface loop hampers the application of rational drug design to this class of enzymes. We have therefore performed an extensive molecular dynamics study of the enzyme in order to identify one or several low-energy conformers. The results indicate that, at least in some of the X-ray structures, the conformation of the flexible surface loop is influenced by crystallographic contacts. Furthermore, three partially helical foldamers of the surface loop are identified which may resemble the resting states of the enzyme or intermediate states that are "traversed" during the substrate binding process. Another, very important aspect for the development of novel antibacterial compounds is the inter- and intra-species variability of the target structure. We present a comparison of MurA sequences from 163 organisms which were analyzed under the aspects of enzyme mechanism, structure and drug design. The results allow us to identify the most promising binding sites for inhibitor interaction, which are present in MurA enzymes of most species and are expected to be insusceptible to resistance-inducing mutations.  相似文献   

10.
Relative free energies for a series of not too different compounds can be estimated accurately from a single simulation of an unphysical reference state that encompasses the characteristic molecular features of the compounds. Previously, this method has been applied to the calculation of free energies of solvation and of ligand binding for small molecules. In the present study we investigate the limits to the accuracy of the method by applying it to a realistic model of the binding of a set of rather large ligands to the protein factor Xa, a key protein in current efforts to design anticoagulation drugs. The evaluation of the binding free energies and conformations of nine derivatives of a biphenylamidino inhibitor leads to insights regarding the effect of the size, flexibility, and character of the unphysical part of the ligand in the reference state on the accuracy of the predicted binding free energies.  相似文献   

11.
The epidermal growth factor receptor (EGFR) is a major target for drugs in treating lung carcinoma as it promotes cell growth and tumor progression. Structural studies have demonstrated that EGFR exists in an equilibrium between catalytically active and inactive forms, and dramatic conformational transitions occur during its activation. It is known that EGFR mutations promote such conformational changes that affect its activation and drug efficacy. The most common point mutation in lung cancer patients is a leucine to arginine substitution at amino acid 834 (L834R). In a recent article, we have studied changes in drug binding affinities due to cancer mutations of EGFR using ensemble molecular dynamics (MD) simulations. Here, we address an enhanced activation mechanism thought to be associated with this mutation. Using extended timescale MD simulations, the structural and energetic properties are studied for both active and inactive conformations of EGFR. The thermodynamic stabilities of these two conformations are characterized by free energy landscapes estimated from molecular mechanics/Poisson-Boltzmann solvent area calculations. Our study reveals that the L834R mutation introduces conformational changes in both states, adjusting the relative stabilities of active and inactive conformations and hence the activation of the EGFR kinase.  相似文献   

12.
A novel computational methodology for drug design that accommodates receptor flexibility is described. This "relaxed-complex" method recognizes that ligand may bind to conformations that occur only rarely in the dynamics of the receptor. We have shown that the ligand-enzyme binding modes are very sensitive to the enzyme conformations, and our approach is capable of finding the best ligand-enzyme complexes. This new method serves as the computational analog of the experimental "SAR by NMR" and "tether" methods, which permit a building block approach for constructing a very potent drug.  相似文献   

13.
Detailed understanding of protein–ligand interactions is crucial to the design of more effective drugs. This is particularly true when targets are protein interfaces which have flexible, shallow binding sites that exhibit substantial structural rearrangement upon ligand binding. In this study, we use molecular dynamics simulations and free energy calculations to explore the role of ligand-induced conformational changes in modulating the activity of three generations of Bcl-XL inhibitors. We show that the improvement in the binding affinity of each successive ligand design is directly related to a unique and measurable reduction in local flexibility of specific regions of the binding groove, accompanied by the corresponding changes in the secondary structure of the protein. Dynamic analysis of ligand–protein interactions reveals that the latter evolve with each new design consistent with the observed increase in protein stability, and correlate well with the measured binding affinities. Moreover, our free energy calculations predict binding affinities which are in qualitative agreement with experiment, and indicate that hydrogen bonding to Asn100 could play a prominent role in stabilizing the bound conformations of latter generation ligands, which has not been recognized previously. Overall our results suggest that molecular dynamics simulations provide important information on the dynamics of ligand–protein interactions that can be useful in guiding the design of small-molecule inhibitors of protein interfaces. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Hepatitis C virus (HCV) NS3/4A protease is an attractive target for the development of antiviral therapy. However, the evolution of antiviral drug resistance is a major problem for treatment of HCV infected patients. Understanding of drug-resistance mechanisms at molecular level is therefore very important for the guidance of further design of antiviral drugs with high efficiency and specificity. Paritaprevir is a potent inhibitor against HCV NS3/4A protease genotype 1a. Unfortunately, this compound is highly susceptible to the substitution at D168 in the protease. In this work, molecular dynamics simulations of paritaprevir complexed with wild-type (WT) and two mutated strains (D168 N and D168Y) were carried out. Due to such mutations, the inhibitor-protein hydrogen bonding between them was weakened and the salt-bridge network among residues R123, R155 and D168 responsible for inhibitor binding was disrupted. Moreover, the per-residue free energy decomposition suggested that the main contributions from key residues such as Q80, V132, K136, G137 and R155 were lost in the D168 N/Y mutations. These lead to a lower binding affinity of paritaprevir for D168 N/Y variants of the HCV NS3/4A protease, consistent with the experimental data. This detailed information could be useful for further design of high potency anti-HCV NS3/4A inhibitors.  相似文献   

15.
The formation and stabilization of telomeric quadruplexes has been shown to inhibit the activity of telomerase, thus establishing telomeric DNA quadruplex as an attractive target for cancer therapeutic intervention. In this context, telomestatin, a G-quadruplex-specific ligand known to bind and stabilize G-quadruplex, is of great interest. Knowledge of the three-dimensional structure of telomeric quadruplex and its complex with telomestatin in solution is a prerequisite for structure-based rational drug design. Here, we report the relative stabilities of human telomeric quadruplex (AG3[T2AG3]3) structures under K+ ion conditions and their binding interaction with telomestatin, as determined by molecular dynamics simulations followed by energy calculations. The energetics study shows that, in the presence of K+ ions, mixed hybrid-type Tel-22 quadruplex conformations are more stable than other conformations. The binding free energy for quadruplex-telomestatin interactions suggests that 1:2 binding is favored over 1:1 binding. To further substantiate our results, we also calculated the change in solvent-accessible surface area (DeltaSASA) and heat capacity (DeltaCp) associated with 1:1 and 1:2 binding modes. The extensive investigation performed for quadruplex-telomestatin interaction will assist in understanding the parameters influencing the quadruplex-ligand interaction and will serve as a platform for rational drug design.  相似文献   

16.
The binding of 2‐amino‐5‐methylthiazole to the W191G cavity mutant of cytochrome c peroxidase is an ideal test case to investigate the entropic contribution to the binding free energy due to changes in receptor flexibility. The dynamic and thermodynamic role of receptor flexibility are studied by 50 ns‐long explicit‐solvent molecular dynamics simulations of three separate receptor ensembles: W191G binding a K+ ion, W191G–2a5mt complex with a closed 190–195 gating loop, and apo with an open loop. We employ a method recently proposed to estimate accurate absolute single‐molecule configurational entropies and their differences for systems undergoing conformational transitions. We find that receptor flexibility plays a generally underestimated role in protein–ligand binding (thermo)dynamics and that changes of receptor motional correlation determine such large entropy contributions.  相似文献   

17.
DNA gyrase subunit B (GyrB) is an attractive drug target for the development of antibacterial agents with therapeutic potential. In the present study, computational studies based on pharmacophore modelling, atom-based QSAR, molecular docking, free binding energy calculation and dynamics simulation were performed on a series of pyridine-3-carboxamide-6-yl-urea derivatives. A pharmacophore model using 49 molecules revealed structural and chemical features necessary for these molecules to inhibit GyrB. The best fitted model AADDR.13 was generated with a coefficient of determination (r²) of 0.918. This model was validated using test set molecules and had a good r² of 0.78. 3D contour maps generated by the 3D atom-based QSAR revealed the key structural features responsible for the GyrB inhibitory activity. Extra precision molecular docking showed hydrogen bond interactions with key amino acid residues of ATP-binding pocket, important for inhibitor binding. Further, binding free energy was calculated by the MM-GBSA rescoring approach to validate the binding affinity. A 10 ns MD simulation of inhibitor #47 showed the stability of the predicted binding conformations. We identified 10 virtual hits by in silico high-throughput screening. A few new molecules were also designed as potent GyrB inhibitors. The information obtained from these methodologies may be helpful to design novel inhibitors of GyrB.  相似文献   

18.
The relevance of receptor conformational change during ligand binding is well documented for many pharmaceutically relevant receptors, but is still not fully accounted for in in silico docking methods. While there has been significant progress in treatment of receptor side chain flexibility sampling of backbone flexibility remains challenging because the conformational space expands dramatically and the scoring function must balance protein–protein and protein–ligand contributions. Here, we investigate an efficient multistage backbone reconstruction algorithm for large loop regions in the receptor and demonstrate that treatment of backbone receptor flexibility significantly improves binding mode prediction starting from apo structures and in cross docking simulations. For three different kinase receptors in which large flexible loops reconstruct upon ligand binding, we demonstrate that treatment of backbone flexibility results in accurate models of the complexes in simulations starting from the apo structure. At the example of the DFG‐motif in the p38 kinase, we also show how loop reconstruction can be used to model allosteric binding. Our approach thus paves the way to treat the complex process of receptor reconstruction upon ligand binding in docking simulations and may help to design new ligands with high specificity by exploitation of allosteric mechanisms. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Water molecules are commonly observed in crystal structures of protein-ligand complexes where they mediate protein-ligand binding. It is of considerable theoretical and practical importance to determine quantitatively the individual free energy contributions of these interfacial water molecules to protein-ligand binding and to elucidate factors that influence them. The double-decoupling free energy molecular dynamics simulation method has been used to calculate the binding free energy contribution for each of the four interfacial water molecules observed in the crystal structure of HIV-1 protease complexed with KNI-272, a potent inhibitor. While two of these water molecules contribute significantly to the binding free energy, the other two have close to zero contribution. It was further observed that the protonation states of two catalytic aspartate residues, Asp25 and Asp125, strongly influence the free energy contribution of a conserved water molecule Wat301 and that different inhibitors significantly influence the free energy contribution of Wat301. Our results have important implications on our understanding of the role of interfacial water molecules in protein-ligand binding and to structure-based drug design aimed at incorporating these interfacial water molecules into ligands.  相似文献   

20.
To promote our better understanding of the dynamic stability of the bovine cathepsin B structure, which is characterized by an extra disulfide bond at Cys148-Cys252 from the other species, and of the binding stability of CA074 (a cathepsin B-specific inhibitor), molecular dynamics (MD) simulations were performed for the enzyme and its CA074 complex, assuming a system in aqueous solution at 300 K. The MD simulation covering 400 ps indicated that the existence of a Cys148-Cys252 disulfide bond increases the conformational flexibility of the occluding loop, although the conformational stability of the overall structure is little affected. The structural characteristics of the complex elucidated by X-ray analysis were suggested to be also intrinsic and stable in the dynamic state; the hydrogen bonding/electrostatic interactions between the main and side chains of CA074 and the Sn and Sn' subsites of the enzyme were maintained throughout the MD simulation. Furthermore, the simulation made clear that the binding of CA074 significantly restricted the conformational flexibility of the substrate binding region, especially the occluding loop, of cathepsin B. Statistical analyses during the simulation suggest that the selectivity of CA074 for cathepsin B stems from the tight P1'-S1' and P2'-S2' interactions, assisted in particular by double hydrogen bonds between the carboxyl two oxygens of the CA074 C-terminus and the imidazole NH groups of His110 and His111 residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号