共查询到20条相似文献,搜索用时 1 毫秒
1.
Cosima Koch Andreas E. Posch Héctor C. Goicoechea Christoph Herwig Bernhard Lendl 《Analytica chimica acta》2014
This paper presents the quantification of Penicillin V and phenoxyacetic acid, a precursor, inline during Pencillium chrysogenum fermentations by FTIR spectroscopy and partial least squares (PLS) regression and multivariate curve resolution – alternating least squares (MCR-ALS). First, the applicability of an attenuated total reflection FTIR fiber optic probe was assessed offline by measuring standards of the analytes of interest and investigating matrix effects of the fermentation broth. Then measurements were performed inline during four fed-batch fermentations with online HPLC for the determination of Penicillin V and phenoxyacetic acid as reference analysis. PLS and MCR-ALS models were built using these data and validated by comparison of single analyte spectra with the selectivity ratio of the PLS models and the extracted spectral traces of the MCR-ALS models, respectively. The achieved root mean square errors of cross-validation for the PLS regressions were 0.22 g L−1 for Penicillin V and 0.32 g L−1 for phenoxyacetic acid and the root mean square errors of prediction for MCR-ALS were 0.23 g L−1 for Penicillin V and 0.15 g L−1 for phenoxyacetic acid. A general work-flow for building and assessing chemometric regression models for the quantification of multiple analytes in bioprocesses by FTIR spectroscopy is given. 相似文献
2.
The estimation of the prediction region of partial least squares (PLS) is necessary in many engineering applications. However, research in this area focuses on the estimation of prediction intervals only. In this work, a new recursive formulation of PLS is proposed to facilitate the calculation of the Jacobian matrix of the estimated coefficient matrix. Furthermore, the computational complexity analysis indicates that the proposed algorithm is O(m2N + mpN + mpN2 + mN3 + mpN4) per number of component. The prediction region of the multivariate PLS is obtained through local linearization. The new formulation provides one way to obtain the prediction region of the multivariate PLS. Simulation and near‐infrared spectra of corn case studies indicate the utility of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
Analysis of elements in wine using near infrared spectroscopy and partial least squares regression 总被引:1,自引:0,他引:1
Cozzolino D Kwiatkowski MJ Dambergs RG Cynkar WU Janik LJ Skouroumounis G Gishen M 《Talanta》2008,74(4):711-716
The use of visible (VIS) and near infrared spectroscopy (NIRS) to measure the concentration of elements in Australian wines was investigated. Both white (n=32) and red (n=94) wine samples representing a wide range of varieties and regions were analysed by inductively coupled plasma mass spectrometry (ICP-MS) for the concentrations of calcium (Ca), potassium (K), magnesium (Mg), phosphorus (P), sodium (Na), sulphur (S), iron (Fe), boron (B) and manganese (Mn). Samples were scanned in transmittance mode (1mm path length) in a monochromator instrument (400-2500nm). The spectra were pre-treated by second derivative and standard normal variate (SNV) prior to developing calibration models using partial least squares (PLS) regression method with cross-validation. The highest coefficients of determination in cross-validation (R(val)(2)) and the lowest errors of cross-validation (SECV) were obtained for Ca (0.90 and 9.80mgL(-1)), Fe (0.86 and 0.65mgL(-1)) and for K (0.89 and 147.6mgL(-1)). Intermediate R(val)(2) (<0.80) and SECV were obtained for the other minerals analysed. The results showed that some macro- and microelements present in wine might be measured by VIS-NIRS spectroscopy. 相似文献
4.
Yunfei Xie Yan Song Yong Zhang Bing Zhao 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2010,75(5):1535-1539
Pefloxacin mesylate, a broad-spectrum antibacterial fluoroquinolone, has been widely used in clinical practice. Therefore, it is very important to detect the concentration of Pefloxacin mesylate. In this research, the near-infrared spectroscopy (NIRS) has been applied to quantitatively analyze on 108 injection samples, which was divided into a calibration set containing 89 samples and a prediction set containing 19 samples randomly. In order to get a satisfying result, partial least square (PLS) regression and principal components regression (PCR) have been utilized to establish quantitative models. Also, the process of establishing the models, parameters of the models, and prediction results were discussed in detail. In the PLS regression, the values of the coefficient of determination (R2) and root mean square error of cross-validation (RMSECV) of PLS regression are 0.9263 and 0.00119, respectively. For comparison, though applying PCR method to get the values of R2 and RMSECV we obtained are 0.9685 and 0.00108, respectively. And the values of the standard error of prediction set (SEP) of PLS and PCR models are 0.001480 and 0.001140. The result of the prediction set suggests that these two quantitative analysis models have excellent generalization ability and prediction precision. However, for this PFLX injection samples, the PCR quantitative analysis model achieved more accurate results than the PLS model. The experimental results showed that NIRS together with PCR method provide rapid and accurate quantitative analysis of PFLX injection samples. Moreover, this study supplied technical support for the further analysis of other injection samples in pharmaceuticals. 相似文献
5.
Maria R. Plata Cosima Koch Patrick Wechselberger Christoph Herwig Bernhard Lendl 《Analytical and bioanalytical chemistry》2013,405(25):8241-8250
A fast and simple method to control variations in carbohydrate composition of Saccharomyces cerevisiae, baker's yeast, during fermentation was developed using mid-infrared (mid-IR) spectroscopy. The method allows for precise and accurate determinations with minimal or no sample preparation and reagent consumption based on mid-IR spectra and partial least squares (PLS) regression. The PLS models were developed employing the results from reference analysis of the yeast cells. The reference analyses quantify the amount of trehalose, glucose, glycogen, and mannan in S. cerevisiae. The selection and optimization of pretreatment steps of samples such as the disruption of the yeast cells and the hydrolysis of mannan and glycogen to obtain monosaccharides were carried out. Trehalose, glucose, and mannose were determined using high-performance liquid chromatography coupled with a refractive index detector and total carbohydrates were measured using the phenol–sulfuric method. Linear concentration range, accuracy, precision, LOD and LOQ were examined to check the reliability of the chromatographic method for each analyte. Figure
Comparison of workflows for carbohydrate determination in S.cerevisiae by FT-IR spectroscopy and HPLC-RI 相似文献
6.
Dreissig I Machill S Salzer R Krafft C 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2009,71(5):2069-2075
Brain tissue is characterized by high lipid content. Its content decreases and the lipid composition changes during transformation from normal brain tissue to tumors. Therefore, the analysis of brain lipids might complement the existing diagnostic tools to determine the tumor type and tumor grade. Objective of this work is to extract lipids from gray matter and white matter of porcine brain tissue, record infrared (IR) spectra of these extracts and develop a quantification model for the main lipids based on partial least squares (PLS) regression. IR spectra of the pure lipids cholesterol, cholesterol ester, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, galactocerebroside and sulfatide were used as references. Two lipid mixtures were prepared for training and validation of the quantification model. The composition of lipid extracts that were predicted by the PLS regression of IR spectra was compared with lipid quantification by thin layer chromatography. 相似文献
7.
In this paper, a methodology to evaluate the probability of false non-compliance and false compliance for screening methods, which give first or second-order multivariate signals is proposed. For this task 120 samples of 6 different kinds of milk have been measured by excitation-emission fluorescence. The samples have been spiked with different amounts of three sulfonamides (sulfadiazine, sulfamerazine and sulfamethazine). These substances have been classified in group B1 (veterinary medicines and contaminants) of annex I of Directive 96/23/EC. The European Union (Commission Regulation EC no. 281/96) has set the maximum residue level (MRL) of total sulfonamides at 100 μg kg−1 in muscle, liver, kidney and milk.The work shows that excitation-emission fluorescence together with the partial least squares class modeling (PLS-CM) procedure may be a suitable and cheap screening method for the total amount of sulfonamides in milk. Three models, PLS-CM, have been built, for the emission and excitation spectra (first-order signals) and for the excitation-emission matrices (second-order signals). In all the cases it reaches probabilities of false compliance below 5% as required by Decision 2002/657/EC.With the same flourescence signals, the total quantity of sulfonamide was calibrated using 2-PLS, 3-PLS and PARAFAC regressions. Using this quantitative approach, the capability of detection, CCβ, around the MRL has been estimated between 114.3 and 115.1 μg kg−1 for a probability of false non-compliance and false compliance equal to 5%. 相似文献
8.
Zahra Talebpour Saeed Maesum Mehdi Jalali-Heravi Mojtaba Shamsipur 《Analytical sciences》2003,19(7):1079-1082
A 1H-NMR procedure based on an analysis of its data by a multivariate calibration method was conducted for the simultaneous determination of theophylline and caffeine in synthetic and real samples. Partial least squares regression (PLS) was chosen as the calibration method. The methyl signals of theophilline at 3.36 and 3.54 ppm that overlapped with those of caffeine were significant characteristics which were employed in this study for their analyses. The proposed method was successfully applied to recovery studies of theophylline and caffeine from real tablet samples. 相似文献
9.
The multitude of biofuels in use and their widely different characteristics stress the need for improved characterisation of their chemical and physical properties. Industrial use of biofuels further demands rapid characterisation methods suitable for on-line measurements. The single most important property in biofuels is the calorific value. This is influenced by moisture and ash content as well as the chemical composition of the dry biomass. Near infrared (NIR) spectroscopy and bi-orthogonal partial least squares (BPLS) regression were used to model moisture and ash content as well as gross calorific value in ground samples of stem and branches wood. Samples from 16 individual trees of Norway spruce were artificially moistened into five classes (10, 20, 30, 40 and 50%). Three different models for decomposition of the spectral variation into structure and noise were applied. In total 16 BPLS models were used, all of which showed high accuracy in prediction for a test set and they explained 95.4-99.8% of the reference variable variation. The models for moisture content were spanned by the O-H and C-H overtones, i.e. between water and organic matter. The models for ash content appeared to be based on interactions in carbon chains. For calorific value the models was spanned by C-H stretching, by O-H stretching and bending and by combinations of O-H and C-O stretching. Also -C=C- bonds contributed in the prediction of calorific value. This study illustrates the possibility of using the NIR technique in combination with multivariate calibration to predict economically important properties of biofuels and to interpret models. This concept may also be applied for on-line prediction in processes to standardize biofuels or in biofuelled plants for process monitoring. 相似文献
10.
In the current study, robust boosting partial least squares (RBPLS) regression has been proposed to model the activities of a series of 4H-1,2,4-triazoles as angiotensin II antagonists. RBPLS works by sequentially employing PLS method to the robustly reweighted versions of the training compounds, and then combing these resulting predictors through weighted median. In PLS modeling, an F-statistic has been introduced to automatically determine the number of PLS components. The results obtained by RBPLS have been compared to those by boosting partial least squares (BPLS) repression and partial least squares (PLS) regression, showing the good performance of RBPLS in improving the QSAR modeling. In addition, the interaction of angiotensin II antagonists is a complex one, including topological, spatial, thermodynamic and electronic effects. 相似文献
11.
Andrew Todd Weakley Arthur L. Miller Peter R. Griffiths Sean J. Bayman 《Analytical and bioanalytical chemistry》2014,406(19):4715-4724
The feasibility of measuring airborne crystalline silica (α-quartz) in noncoal mine dusts using a direct-on-filter method of analysis is demonstrated. Respirable α-quartz was quantified by applying a partial least squares (PLS) regression to the infrared transmission spectra of mine-dust samples deposited on porous polymeric filters. This direct-on-filter method deviates from the current regulatory determination of respirable α-quartz by refraining from ashing the sampling filter and redepositing the analyte prior to quantification using either infrared spectrometry for coal mines or x-ray diffraction (XRD) from noncoal mines. Since XRD is not field portable, this study evaluated the efficacy of Fourier transform infrared spectrometry for silica determination in noncoal mine dusts. PLS regressions were performed using select regions of the spectra from nonashed samples with important wavenumbers selected using a novel modification to the Monte Carlo unimportant variable elimination procedure. Wavenumber selection helped to improve PLS prediction, reduce the number of required PLS factors, and identify additional silica bands distinct from those currently used in regulatory enforcement. PLS regression appeared robust against the influence of residual filter and extraneous mineral absorptions while outperforming ordinary least squares calibration. These results support the quantification of respirable silica in noncoal mines using field-portable infrared spectrometers. Figure
Partial least square's predicted (Yfit) vs. observed (Yobs) reparable silica using infrared absorbance from the α-quartz doublet region of filter-deposited mine dust sample spectra. predictive features selected via backward Monte Carlo unimportant variable elimination (lower right hand corner) are also shown 相似文献
12.
J. J. Berzas Nevado J. Rodríguez Flores G. Castaeda Pealvo 《Analytica chimica acta》1997,340(1-3):257-265
Two spectrophotometric methods for the determination of Ethinylestradiol (ETE) and Levonorgestrel (LEV) by using the multivariate calibration technique of partial least square (PLS) and principal component regression (PCR) are presented. In this study the PLS and PCR are successfully applied to quantify both hormones using the information contained in the absorption spectra of appropriate solutions. In order to do this, a calibration set of standard samples composed of different mixtures of both compounds has been designed. The results found by application of the PLS and PCR methods to the simultaneous determination of mixtures, containing 4–11 μg ml−1 of ETE and 2–23 μg ml−1 of LEV, are reported. Five different oral contraceptives were analyzed and the results were very similar to that obtained by a reference liquid Chromatographic method. 相似文献
13.
Lei Zhang Qingqing Li Wei Tao Bohao Yu Yiping Du 《Analytical and bioanalytical chemistry》2010,398(4):1827-1832
Silver sol surface-enhanced Raman spectroscopy (SERS) was considered as a technique in the quantitative analysis of low-concentration thymine. Because of the poor stability and reproducibility of SERS signal, a polymer of polyacrylic acid sodium was selected as a stable medium to add into silver sol in order to obtain a surface-enhanced Raman spectroscopy signal. Assignments of Raman shift for solid thymine, SERS of thymine, and SERS of thymine containing stable medium were given. The comparison of Raman peaks between them showed that the addition of stable medium had a little influence on the SERS of thymine and is suitable for the quantitative analysis of low-concentration thymine. 相似文献
14.
Phosphorus (P) is a major cause of eutrophication and subsequent loss of water quality in freshwater ecosystems. A major part of the flux of P to eutrophic lake sediments is organically bound or of biogenic origin. Despite the broad relevance of polyphosphate (Poly-P) in bioremediation and P release processes in the environment, its quantification is not yet well developed for sediment samples. Current methods possess significant disadvantages because of the difficulties associated with using a single extractant to extract a specific P compound without altering others. A fast and reliable method to estimate the quantitative contribution of microorganisms to sediment P release processes is needed, especially when an excessive P accumulation in the form of polyphosphate (Poly-P) occurs. Development of novel approaches for application of emerging spectroscopic techniques to complex environmental matrices such as sediments significantly contributes to the speciation models of P mobilization, biogeochemical nutrient cycling and development of nutrient models. In this study, for the first time Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy in combination with partial least squares (PLS) was used to quantify Poly-P in sediments. To reduce the high absorption matrix components in sediments such as silica, a physical extraction method was developed to separate sediment biological materials from abiotic particles. The aim was to achieve optimal separation of the biological materials from sediment abiotic particles with minimum chemical change in the sample matrix prior to ATR-FTIR analysis. Using a calibration set of 60 samples for the PLS prediction models in the Poly-P concentration range of 0-1 mg g(-1) d.w. (dry weight of sediment) (R(2) = 0.984 and root mean square error of prediction RMSEP = 0.041 at Factor-1) Poly-P could be detected at less than 50 μg g(-l) d.w. Using this technique, there is no solvent extraction or chemical treatment required, sample preparation is minimal and simple, and the analysis time is greatly reduced. The results from this study demonstrated the potential of ATR FT-IR spectroscopy as an alternative method to study Poly-P in sediments. 相似文献
15.
《Analytica chimica acta》2002,452(2):311-319
The characterisation of adsorption or impregnation processes using conventional or supercritical fluid technologies becomes an increasing part of the research on drug formulations. The complexity of the relationships between these adsorption processes and the experimental variables potentially influencing them, however, makes these studies more problematic. In this paper, a chemometric approach based on nonlinear partial least squares (NL-PLS) modelling is applied to characterise the effect of the experimental variables on the supercritical impregnation process. Various adsorbent materials such as silica gel, zeolite and amberlite were investigated using the following model compounds as adsorbates: benzoic, salicylic and acetylsalicylic acids. 相似文献
16.
17.
Near-infrared (NIR) imaging systems simultaneously record spectral and spatial information. Near-infrared imaging was applied to the identification of (E,Z)-4-(3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloyl)morpholine (dimethomorph) in both mixed samples and commercial formulation in this study. The distributions of technical dimethomorph and additive in the heterogeneous counterfeit product were obtained by the relationship imaging (RI) mode. Furthermore, a series of samples which consisted of different contents of uniformly distributed dimethomorph were prepared and three data cubes were generated for each content. The spectra extracted from these images were imported to establish the partial least squares model. The model??s evaluating indicators were: coefficient of determination (R 2) 99.42 %, root mean square error of calibration (RMSEC) 0.02612, root mean square error of cross-validation (RMSECV) 0.01693, RMSECVmean 0.03577, relative standard error of prediction (RSEP) 0.01999, and residual predictive deviation (RPD) 15.14. Relative error of prediction of the commercial formulation was 0.077, indicating the predicted value correlated with the real content. The chemical value reconstruction image of dimethomorph formulation products was calculated by a MATLAB program. NIR microscopy imaging here manifests its potential in identifying the active component in the counterfeit pesticide and quantifying the active component in its scanned image. 相似文献
18.
A novel optimisation algorithm is presented for full spectrum calibration models in near-infrared (NIR) spectroscopy. The algorithm is used to investigate the affect of removing continuous spectral regions on parameters critical to the validity of the model (e.g. explained variance, bias etc.) and ultimately identify and remove problem areas of the spectrum. As an example of its application, this paper shows how to optimise partial least squares regression (PLSR) calibration models for predicting moisture content within an intact pharmaceutical product and how problems due to changes in the nature of samples since setting up the original model may be eliminated. On application of two validated calibration models to a new set of samples unacceptable results were obtained for bias (-0.26 and -0.21% m/m moisture content) between the NIR predicted values and the true values (Karl Fischer analysis). The optimisation algorithm identified small regions of the spectrum, which if included in development of the models contributed significant bias to the final prediction. On removal of these problem regions the calibration models were found to be equally accurate and precise, but with the added advantage of robustness to a variable region of the sample spectrum (bias reduced to -0.05 and -0.09% m/m). 相似文献
19.
A partial least squares (PLS) and wavelet transform hybrid model are proposed to analyze the carbon content of coal by using laser-induced breakdown spectroscopy (LIBS). The hybrid model is composed of two steps of wavelet analysis procedures, which include environmental denoising and background noise reduction, to pretreat the LIBS spectrum. The processed wavelet coefficients, which contain the discrete line information of the spectra, were taken as inputs for the PLS model for calibration and prediction of carbon element. A higher signal-to-noise ratio of carbon line was obtained after environmental denoising, and the best decomposition level was determined after background noise reduction. The hybrid model resulted in a significant improvement over the conventional PLS method under different ambient environments, which include air, argon, and helium. The average relative error of carbon decreased from 2.74 to 1.67% under an ambient helium environment, which indicated a significantly improved accuracy in the measurement of carbon in coal. The best results obtained under an ambient helium environment could be partly attributed to the smallest interference by noise after wavelet denoising. A similar improvement was observed in ambient air and argon environments, thereby proving the applicability of the hybrid model under different experimental conditions. 相似文献
20.
将滴定体系调节至pH 2.0,用碱标准溶液滴定至特定pH所消耗滴定荆为测量指标,构建了多组分有机酸滴定数据阵,分别以主成分回归法、偏最小二乘法以及人工神经元网络法进行多组分拟合.结果表明,偏最小二乘法的拟合结果最佳,对混合体系中乙酸、乳酸、草酸、琥珀酸、柠檬酸和乌头酸总量的相对预测均方根误差分别为5.80%、8.88%... 相似文献