首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of β-CD and α-CD on the electrochemical behaviour of H2A and HA on platinum is studied. The adsorption of β-CD on this electrode is demonstrated and proved to be dependent on the base electrolyte composition. The maximum adsorption coverage was reached in phosphate solution at pH 6.95. The homogeneous H2A---β-CD complex formation produced a decrease in the oxidation current and a positive shift in the oxidation peak potential. These effects are predominant in acid solutions. In neutral solutions the opposite behaviour is observed, i.e. an increase in the oxidation current at lower oxidation potentials. The presence of a parallel oxidation route for the vitamin involving strongly adsorbed CO residues is considered, and evidence for a decrease in COad in the presence of β-CD was given by variations in hydrogen adsorption charges. This fact, more important in neutral solutions, must be responsible for the catalytic effect observed. α-CD was not adsorbed, neither did it modify the electro-oxidation behaviour of H2A and HA.  相似文献   

2.
Nimesulide (NIM, N-(4-nitro-2-phenoxyphenyl)methanesulfonamide) is a relatively new nonsteroidal anti-inflammatory analgesic drug. It is practically insoluble in water (<0.02 mg/mL). This very poor aqueous solubility of the drug may lead to low bioavailability. The objective of the present study was to investigate the possibility of improving the solubility and the bioavailability of NIM via complexation with polysaccharide arabinogalactan (AG), disodium salt of glycyrrhizic acid (Na2GA), hydroxypropyl-β-cyclodextrin (HP-β-CD) and MgCO3. Solid dispersions (SD) have been prepared using a mechanochemical technique. The physical properties of nimesulide SD in solid state were characterized by differential scanning calorimetry and X-ray diffraction studies. The characteristics of the water solutions which form from the obtained solid dispersions were analyzed by reverse phase and gel permeation HPLC. It was shown that solubility increases for all complexes under investigation. These phenomena are obliged by complexation with auxiliary substances, which was shown by 1H-NMR relaxation methods. The parallel artificial membrane permeability assay (PAMPA) was used for predicting passive intestinal absorption. Results showed that mechanochemically obtained complexes with polysaccharide AG, Na2GA, and HP-β-CD enhanced permeation of NIM across an artificial membrane compared to that of the pure NIM. The complexes were examined for anti-inflammatory activity on a model of histamine edema. The substances were administered per os to CD-1 mice. As a result, it was found that all investigated complexes dose-dependently reduce the degree of inflammation. The best results were obtained for the complexes of NIM with Na2GA and HP-β-CD. In noted case the inflammation can be diminished up to 2-fold at equal doses of NIM.  相似文献   

3.
Complexation of ketoconazole (KET), a broad-spectrum antifungal drug, with β- and γ-cyclodextrins (CDs), heptakis (2,6-di-O-methyl)-β-CD (2,6-DM-β-CD), heptakis (2,3,6-tri-O-methyl)-β-CD (TM-β-CD), 2-hydroxypropyl-β-CD (2HP-β-CD) and carboxymethyl-β-CD (CM-β-CD) was studied. The stability constants were determined by the solubility method at pH = 6 and for 2,6-DM-β-CD and CM-β-CD at pH = 5. At pH = 6, the stability constants increased in the order: TM-β-D < γ-CD < 2HP-β-CD < β-CD < CM-β-CD < 2,6-DM-β-CD. At pH = 5, due to the increased ionization of KET, the stability constant with CM-β-CD increased and with 2,6-DM-β-CD decreased. For complexes of KET with 2HP-β-CD and 2,6-DM-β-CD, the thermodynamic parameters of complexation were determined from the temperature dependence of the corresponding stability constants. For β–γ and TM-β-CD complexes, calculations using HyperChem 6 software by the Amber force field were carried out to gain some insight into the host–guest geometry.  相似文献   

4.
The electronic absorption spectra and fluorescence spectra of 4-(2-naphthyl)pyridine (1), 2-(4-methyl-2-pyridyl)-4-(2-naphthyl)pyridine (2), and 4-(2-naphthyl)-2-phenylpyridine (3) in solutions and in complexes with β-cyclodextrin (β-CD) and well water-soluble hydroxy-propyl-β-cyclodextrin (HP-β-CD) were studied. Fluorescence near 475 nm observed in aqueous solutions of compounds 1–3 arises from protonated forms of these compounds produced in the excited state. Results of DFT quantum chemical calculations show an increase in proton affinity energies of excited-state naphthylpyridines 2 and 3. The formation of inclusion complexes with cyclodextrins makes protonation of compounds 2 and 3 more difficult, which manifests in large hypsochromic shifts of fluorescence band maxima. The stability constants of the complexes 1·HP-β-CD and 2·HP-β-CD determined from their fluorescence spectra are 3425 and 3760 L mol−1, respectively. The stability constant of the complex 3·HP-β-CD (5500±600 L mol−1) was found from the changes in the solubility of naphthylpyridine 3 in water upon complexation. Semiempirical quantum chemical calculations of the molecular structures and thermodynamic characteristics of pseudorotaxane inclusion complexes of trans-2, cis-2, and trans-2·H2O with HP-β-CD were carried out. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 272–280, February, 2007.  相似文献   

5.
The electronic absorption and fluorescence spectral properties of 11-methyl-12H-benzo[a]phenothiazine (11-MeBPHT) were investigated in various media (water, ethanol, β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) aqueous solutions). Fluorescence quantum yields were respectively about 20 and 2 times larger in HP-β-CD and β-CD than in water. The formation of a 1:1 stoichiometry inclusion complex between 11-MeBPHT and HP-β-CD (association constant K f=118±3 M−1 at 20 °C) was studied in aqueous medium by fluorescence spectroscopy. Analytical figures of merit were satisfactory for 11-MeBPHT with linear dynamic ranges over at least two orders of magnitude and limits of detection (LODs) between 0.2 and 1 ng/ml according to the medium. An analytical application to the determination of 11-MeBPHT in human urine samples by the standard addition procedure led to satisfactory recovery percentages (91–108%).  相似文献   

6.
Guest–host interactions were examined for neutral diclofenac (Diclo) and Diclofenac sodium (Diclo sodium) with each of the cyclodextrin (CD) derivatives: α-CD, β-CD, γ-CD and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), all in 0.05 M aqueous phosphate buffer solution adjusted to 0.2 M ionic strength with NaCl at 20 °C, and with β-CD at different pHs and temperatures. The pH solubility profiles were measured to obtain the acid–base ionization constants (pK as) for Diclo in the presence and absence of β-CD. Phase solubility diagrams (PSDs) were also measured and analyzed through rigorous procedures to obtain estimates of the complex formation constants for Diclo/CD and Diclo sodium/CD complexation in aqueous solutions. The results indicate that both Diclo and Diclo sodium form soluble 1:1 complexes with α-, β-, and HP-β-CD. In contrast, Diclo forms soluble 1:1 Diclo/γ-CD complexes, while Diclo sodium forms 1:1 and 2:1 Diclo/γ-CD, but the 1:1 complex saturates at 5.8 mM γ-CD with a solubility product constant (pK sp = 5.5). Therefore, though overall complex stabilities were found to follow the decreasing order: γ-CD > HP-β-CD > β-CD > α-CD, some complex precipitation problems may be faced with aqueous formulations of Diclo sodium with γ-CD, where the overall concentration of the latter exceeds 5.8 mM γ-CD. Both 1H-NMR spectroscopic and molecular mechanical modeling (MM+) studies of Diclo/β-CD indicate the possible formation of soluble isomeric 1:1 complexes in water.  相似文献   

7.
The purpose of the work is physicochemical characterization of nimesulide (NI) and meloxicam (ME)–hydroxypropyl-β-cyclodextrin (HP-β-CD) binary systems both in solution and solid states and to improve the pharmaceutical properties of NI and ME via inclusion complexation with HP-β-CD. Binary systems of NI and ME with HP-β-CD have been characterized both in solution and solid state by different physicochemical methods. Three types of drug–HP-β-CD binary systems, namely physical mixtures (PM), kneaded systems (KS) and co evaporated systems (CS) in 1:1 and 1:2 molar ratios (1:1 and 1:2 M) were prepared. Phase solubility and 1H-NMR spectroscopic studies in solution state revealed 1:1 M complexation of NI and ME with HP-β-CD. A partial inclusion of NI with HP-β-CD at both molar ratios of kneaded and co evaporated systems and a true inclusion of ME with HP-β-CD at both molar ratios of co evaporated systems in solid state was confirmed by differential scanning calorimetry (DSC), powder X-ray diffractometry (powder X-RD) and scanning electron microscopy (SEM) studies. Dissolution properties of NI and ME–HP-β-CD binary systems were superior when compared to corresponding pure drugs. The aqueous solubility and dissolution properties of NI and ME can be improved by inclusion complexation with HP-β-CD. Author for correspondence: E-mail: nbnaid2@E-mail.uky.edu  相似文献   

8.
Solubilities of tricyclic acyclovir derivatives in buffered aqueous solutions of hydroxypropyl-β-cyclodextrin (HP-β-CD) at pH 5.5 and 7.0 were determined at 25 and 37 °C. Complexation of these compounds with HP-β-CD resulted in a noticeable increase of their solubility; nevertheless it was limited to tricyclic derivatives of acyclovir carrying an aryl substituent. Combination of 1H NMR and DSC techniques demonstrated the existence of inclusion complexes between acyclovir derivatives and HP-β-CD. The stability constants, estimated using the Higuchi–Connors method, were found in the range of 10–100 M−1. Additionally, the pK a values at 25 °C and molar extinction coefficients in aqueous buffered solutions were also determined for all studied compounds.  相似文献   

9.
Spontaneous and photoinduced protonation of 4-(2-naphthyl)pyridine (1) in solutions and in complexes with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was studied using the absorption and fluorescence spectroscopies. The structures and stabilities of complexes of compound 1 and its quaternized derivative, 1-methyl-4-(2-naphthyl)pyridinium perchlorate (3), with β-CD and HP-β-CD were examined by 1H NMR titration (logK = 1.5–2.3). The molecule of naphthylpyridine 1 is always in the cyclodextrin cavity, regardless of the pH value of the solution. 2-Hydroxypropyl-β-cyclodextrin binds better the neutral form of compound 1 than does β-CD, while naphthylpyridinium salts exhibit nearly equal affinities to both cavitands. According to spectroscopic data, pK a (1) is 5.12 in water, which favors protonation of the N atom both in the ground and excited states; as a result, the fluorescence spectrum exhibits only the band of the protonated form with a lifetime of 15 ns. The addition of HP-β-CD to a solution of naphthylpyridine 1 results in the formation of inclusion complex 1@HP-β-CD, lowers pK a to 4.62, and gives rise to a fluorescence band of the nonprotonated form of compound 1 with a lifetime of 1.25 ns. Therefore, the presence of compound 1 in the HP-β-CD cavity precludes its protonation in the excited state. The initial portions of the fluorescence curves for compound 1 in solution and in its complex with HP-β-CD obtained upon pulsed excitation were compared to propose the initiation mechanism of short-lived fluorescence of the nonprotonated form of naphthylpyridine 1. Quantum chemical modeling of the protonation and complexation of compound 1 in the presence of water was performed. Based on the results obtained, a reversible photoinduced mechanical motion of naphthylpyridine 1 in the HP-β-CD cavity was suggested.  相似文献   

10.
The inclusion complexes induced by cyclodextrins and its derivates have been shown previously to enhance the biotransformation of hydrophobic compounds. Using hydroxypropyl-β-cyclodextrin (HP-β-CD; 20% w/v), the water solubility of cortisone acetate increased from 0.039 to 7.382 g L−1 at 32 °C. The solubilization effect of HP-β-CD was far superior to dimethylformamide (DMF) and ethanol. The dissolution rate also significantly increased in the presence of HP-β-CD. The enzymatic stability of Δ1-dehydrogenase from Arthrobacter simplex TCCC 11037 was not influenced by the increasing concentrations of HP-β-CD contrary to the organic cosolvents which negatively influenced in the order DMF > ethanol. The activity inhibition effect caused by HP-β-CD was not so conspicuous as ethanol and DMF. Inactivation constants of ethanol, DMF, and HP-β-CD were 5.832, 4.541, and 1.216, respectively. The inactivation energy (E a) was in the order of HP-β-CD (55.1 kJ mol−1) > ethanol (39.9 kJ mol−1) > DMF (37.1 kJ mol−1).  相似文献   

11.
The adsorption isotherms of 2-amino-5-nitropyridine (ANP) on the (111) and (210) silver faces from an aqueous solution of 0.09 M KClO4 + 0.02 M NaOH were determined at −0.4 V vs. the 1 mol−1 calomel electrode using double-potential-step chronocoulometry. The surface concentration ΓANP of ANP was obtained by stepping the applied potential from −0.4 V, where ANP is electroinactive, to −1.2 V, where ANP is electroreduced to 2,5-diaminopyridine. The charge involved in this step, once corrected for the diffusive and capacitive contributions, yields 6FΓANP directly. The maximum surface concentration and standard Gibbs energy of adsorption are equal to 3.6 × 10−10 mol cm−2 and −35 kJ mol−1 on Ag(111) and 5.2 × 10−10 mol cm−2 and 42 kJ mol−1 on Ag(210), thus demonstrating the strong effect of surface crystallography on the energetics of ANP adsorption.  相似文献   

12.
This work aimed at improving the water solubility of Ginsenoside (G)-Re by forming an inclusion complex. The solubility parameters of G-Re in alpha (α), beta (β), and gamma (γ) cyclodextrin (CD) were investigated. The phase solubility profiles were all classified as AL-type that indicated the 1:1 stoichiometric relationship with the stability constants Ks which were 22 M−1 (α-CD), 612 M−1 (β-CD), and 14,410 M−1 (γ-CD), respectively. Molecular docking studies confirmed the results of phase solubility with the binding energy of −4.7 (α-CD), −5.10 (β-CD), and −6.70 (γ-CD) kcal/mol, respectively. The inclusion complex (IC) of G-Re was prepared with γ-CD via the water-stirring method followed by freeze-drying. The successful preparation of IC was confirmed by powder X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). In-vivo absorption studies were carried out by LC-MS/MS. Dissolution rate of G-Re was increased 9.27 times after inclusion, and the peak blood concentration was 2.7-fold higher than that of pure G-Re powder. The relative bioavailability calculated from the ratio of Area under the curve AUC0 of the inclusion to pure G-Re powder was 171%. This study offers the first report that describes G-Re’s inclusion into γ-CD, and explored the inclusion complex’s mechanism at the molecular level. The results indicated that the solubility could be significantly improved as well as the bioavailability, implying γ-CD was a very suitable inclusion host for complex preparation of G-Re.  相似文献   

13.
The direct electrochemical reduction of hemin, protoporphyrin(IX) iron(III) chloride, ligated with strong or weak heterocyclic bases, was investigated in the ionic liquids (IL), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF6]), using cyclic voltammetry and chronocoulometry. Hemin complexed with N-methylimidazole (NMI) or with pyridine had E1/2 values slightly (4–59 mV) more positive in IL (without electrolyte) than in methanol (1.0 M electrolyte) using a gold electrode. NMI-ligated hemin had a lower E1/2 than pyridine-ligated hemin in either IL, consistent with the stronger electron donor characteristic of NMI. [Bmim][PF6] solutions consistently yielded E1/2 values 30 mV more negative than [omim][PF6] solutions. The diffusion coefficients Do of hemin in the IL ranged between 1.50 and 2.80×10−7 cm2 s−1, while the heterogeneous electron-transfer rate constants ks ranged between 3.7 and 14.3×10−3 cm s−1. Cyclic voltammetry of hemin adsorbed to a gold surface through 4,4′-bispyridyl disulfide (AT4) linkages showed a large positive shift in the oxidation wave, indicating that adsorption stabilizes the reduced hemin state. The surface concentration Γo of the adsorbed hemin was determined to be 1.21×10−10 mol cm−2, indicating the presence of one or more complete monolayers of hemin. These findings suggest that while hemin is electrochemically active in IL, its behavior is modified by the ligand field strength and surface adsorption phenomena.  相似文献   

14.
The electrochemical behavior of myoglobin (Mb) and hemoglobin (Hb) was investigated with a boron-doped diamond (BDD) electrode by cyclic voltammetry. In acetate buffer solutions, the oxygen reduction at the BDD electrode showed a very high overpotential while the reduction of Mb or Hb was observed in the more positive potential region. Owing to the electrocatalytic reaction of O2 and the participation of H+ following the electrochemical reduction of ferric proteins, the voltammetric responses for Mb and Hb on the BDD electrode in the negative going scans became remarkable in acidic buffer solutions in air. The peak current was linearly proportional to the concentration of Mb in the range 1×10−6–2×10−5 M or the concentration of Hb from 1×10−6 to 1×10−5 M.  相似文献   

15.
The adsorption of -histidine on a copper electrode from H2O- and D2O-based solutions is studied by means of surface-enhanced Raman scattering (SERS) spectroscopy. Different adsorption states of histidine are observed depending upon pH, potential, and the presence of the SO2−4 and Cl ions. In acidic solutions of pH 1.2 the imidazole ring of the adsorbed histidine remains protonated and is not involved in the chemical coordination with the surface. The SO2−4 and Cl ions compete with histidine for the adsorption sites. In solutions of pH 3.1 three different adsorption states of histidine are observed depending on the potential. Histidine adsorbs with the protonated imidazole ring oriented mainly perpendicularly to the surface at potentials more positive than −0.2 V. Transformation of that adsorption state occurs at more negative potentials. As this takes place, histidine adsorbs through the α-NH2 group and the neutral imidazole ring. The Cl ions cause the protonation and detachment of the α-NH2 group from the surface and the formation of the ion pair NH+3 … Cl can be observed. In the neutral solution of pH 7.0 histidine adsorbs through the deprotonated nitrogen atom of the imidazole ring and the α-COO group at E ≥ −0.2 V. However, this adsorption state is transformed into the adsorption state in which the α-NH2 group and/or neutral imidazole ring participate in the anchoring of histidine to the surface, once the potential becomes more negative. In alkaline solutions of pH 11.9 histidine is adsorbed on the copper surface through the neutral imidazole ring.  相似文献   

16.
The solubilization of pyrene in aqueous solution of β-cyclodextrin (β-CD) or its derivatives such as β-CD-hexanoyl, β-CD-benzoyl and β-CD-dodecylsulfonate was investigated by spectrophotometry. Linear and non-linear regression methods were used to estimate the association constants (K1). A 1:1 stoichiometric ratio and different effects of the hexanoyl, benzoyl and dodecylsulfonate groups on the association constant were observed for the binary inclusion complex between pyrene and β-CD. The formation constant was shown to decrease when β-CD was modified by a dodecylsulfonate chain. The value of K1 was 190 ± 10 L mol−1 for the [pyrene/β-CD] complex and 145 L mol−1 for the [pyrene/β-CD-dodecylsulfonate] complex. Partitioning of the pyrene molecules between the dodecylsulfonate chains and cyclodextrin cavities can explain the decrease in the association constant value. In the cases of β-CD-hexanoyl and β-CD-benzoyl derivatives, no association constants were detected. Results suggest that the high hydrophobicity of the hexanoyl and benzoyl groups prevents the inclusion of pyrene molecules inside the cyclodextrin cavity.  相似文献   

17.
Electrochemical copolymerizations of N1,N2-bis(thiophen-3-ylmethylene)benzene-1,2-diamine (TMBD), 4-methyl-N1,N2-bis (thiophen-3-ylmethylene)benzene-1,2-diamine (MTMBD) and 4-nitro-N1,N2-bis(thiophen-3-ylmethylene)benzene-1,2-diamine (NTMBD) with 3,4-ethylenedioxy thiophene (EDOT) were carried out in CH3CN/LiClO4 (0.1 M) solvent–electrolyte couple via potentiodynamic electrolysis. The resulting copolymers were characterized by cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The conductivity measurements of copolymers and PEDOT were carried out by the four-probe technique.  相似文献   

18.
Aim of the present work was to investigate the effect of hydroxypropyl-β-cyclodextrin (HP-β-CD) on the solubility, dissolution rate and stability of Valsartan (VAL), a drug used orally for the treatment of hypertension. Phase solubility studies demonstrated the ability of the HP-β-CD to complex VAL and to increase drug solubility. The dissolved amount of VAL increased linearly with the addition of HP-β-CD according to an AL type plot. The apparent stability constant of the complex, calculated supposing a 1:1 stoichiometry, was 296±7 M−1. VAL/HP-β-CD interactions were also studied by 13C-NMR spectroscopy. Equimolar VAL/HP-β-CD solid systems were prepared by physical-mixing and freeze-drying, and their properties in the solid state studied by DSC and FT-IR analysis. The results provided clear indications of the formation of a new solid phase corresponding to the inclusion complex in the freeze-dried sample. The dissolution profiles of the drug from each solid system were affected by its physico-chemical properties, the freeze-dried being the most rapidly dissolving form. The thermal stability of the complex was studied, also determining the number and identity of the decomposition products of the drug. The stability studies revealed that the VAL/HP-β-CD complex significantly decreases the rate of VAL degradation. These results suggest that CD technology would be a very useful method to overcome the solubility and the stability problems of VAL.  相似文献   

19.
The adsorption characteristics of a variety of metal-EDTA complexes onto hydrous oxides, principally aluminum oxide (γ-Al2O3), were examined in aqueous solution. Adsorption of these complexes increased with increasing proton concentration due to the formation of surface complexes between EDTA and the surface hydroxo groups, specifically the AlOH2+ surface groups. The pH-dependent adsorptive behavior and the magnitude of adsorption of the “free” EDTA species were similar to those of the metal complexes. The results also showed that the adsorption of “free” EDTA was exothermic, while the adsorption of Ni(II)-EDTA complexes was endothermic in the lower pH region (3.5) and exothermic at higher pH values (6.0). This implied that the surface preferred the NiHEDTA−1 species rather than the NiEDTA−2 species. Specific adsorption of the metal complexes was evidenced by the charge reversal exhibited by the γ-Al2O3 particles at the highest surface loadings. A quantitative model was formulated based on the pH-dependent speciation of the oxide surface, speciation of the metal complexes in solution, and ζ potential measurements. This model proved valid over a wide range of pH (3–10) and for both high (>50% coverage) and low (<10% coverage) surface loadings.  相似文献   

20.
The kinetics of electrolyte extraction into water and the electrosurface properties (adsorption of potential-determining ions H+ and OH and ζ potential) of five fractions of schungite III (particle sizes of < 5, 50–100, 160–400, 400–1000, and 1600–2500 µm) are studied in aqueous NaCl, CaCl2, and AlCl3 solutions at different pH values. It is shown that, in water and NaCl and CaCl2 solutions, the point of zero charge (PZC) of the particles with sizes of 50–100 and 160–400 µm is observed at pH 4.0 and is independent of the electrolyte concentration. The isoelectric point (IEP) for small (<5 µm) schungite III particles is observed at pH 2.8. The IEP position is independent of CaCl2 concentration, but it shifts to pH 2.4 when NaCl concentration increases to 0.1 M. The disclosed differences in the PZC and IEP values may be caused by different compositions of particles of different fractions. In a 10−5 M AlCl3 solution, schungite particles demonstrate three IEPs (pH 3.0, 4.5, and 7.4) due to different degrees of AlCl3 hydrolysis at different pH values.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 4, 2005, pp. 450–457.Original Russian Text Copyright © 2005 by Aleinikov, Lorentsson, Chernoberezhskii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号