共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
考虑纵向数据下半参数回归模型:yij=x′ijβ+g(tij)+eij,i=1,…,n,j=1,…,mi.基于最小二乘法和一般的非参数权函数方法给出了模型中参数β和回归函数g(·)的估计,并在适当条件下证明了参数分量β的估计量的强收敛速度和未知函数g(·)的估计量的一致强收敛速度. 相似文献
5.
6.
7.
8.
9.
本文考虑基于删失数据的一般回归模型回归系数的方向估计,结合非参数回归和最小一乘方法构造了模型方向的估计,在较为一般的条件下证明了估计量的相合性. 相似文献
10.
考虑纵向数据下混合效应EV模型。对带有惩罚项的Profile广义最小二乘方法进行了修正。利用矩估计法和ML-based EM算法给出了固定效应,随机效应以及协方差阵的估计。在一般的条件下,给出了固定效应估计的强相合性和渐近正态性,并对所提出的各种估计进行了模拟研究。模拟效果不错。 相似文献
11.
12.
纵向数据常常用正态混合效应模型进行分析.然而,违背正态性的假定往往会导致无效的推断.与传统的均值回归相比较,分位回归可以给出响应变量条件分布的完整刻画,对于非正态误差分布也可以给稳健的估计结果.本文主要考虑右删失响应下纵向混合效应模型的分位回归估计和变量选择问题.首先,逆删失概率加权方法被用来得到模型的参数估计.其次,结合逆删失概率加权和LASSO惩罚变量选择方法考虑了模型的变量选择问题.蒙特卡洛模拟显示所提方法要比直接删除删失数据的估计方法更具优势.最后,分析了一组艾滋病数据集来展示所提方法的实际应用效果. 相似文献
13.
In this paper, we study the asymptotic behavior of the B-spline estimator for semiparametric panel data model with fixed effects.We give explicit expression for the asymptotic bias of B-spline estimator for nonparametric function m. Our study shows that the asymptotic bias of the B-spline estimator does not depend on the working correlation matrix. Simulations are conducted to demonstrate our conclusion. 相似文献
14.
We extend the instrumental variable method for the mean regression models to linear quantile regression models with errors-in-variables. The proposed estimator is consistent and asymptotically normally distributed under some fairly general conditions. Moreover, this approach is practical and easy to implement. Simulation studies show that the finite sample performance of the estimator is satisfactory. The method is applied to a real data study of education and wages. 相似文献
15.
在带有罚函数的变量选择中,调节参数的选择是一个关键性问题,但遗憾的是,在大多数文献中,调节参数选择的方法较为模糊,多凭经验,缺乏系统的理论方法.本文基于含随机效应的面板数据模型,提出分位回归中适应性LASSO调节参数的选择标准惩罚交叉验证准则(PCV),并讨论比较了该准则与其他选择调节参数的准则的效果.通过对不同分位点进行模拟,我们发现当残差E来自尖峰分布和厚尾分布时,该准则能更好地估计模型参数,尤其对于高分位点和低分位点而言.选取其他分位点时,PCV的效果虽稍逊色于Schwarz信息准则,但明显优于A1kaike 信息准则和交叉验证准则.且在选择变量的准确性方面,该准则比Schwarz信息准则、Akaike信息准则等更加有效.文章最后对我国各地区多个宏观经济指标的面板数据进行建模分析,展示了惩罚交叉验证准则的性能,得到了在不同分位点处宏观经济指标之间的回归关系. 相似文献
16.
在缺失样本下,构造了线性模型中参数的调整的经验似然置信域,数值模拟表明调整的经验似然置信域有较好的覆盖率和精度. 相似文献
17.
Ingrid Van Keilegom Noël Veraverbeke 《Annals of the Institute of Statistical Mathematics》1997,49(3):467-491
We study Beran's extension of the Kaplan-Meier estimator for thesituation of right censored observations at fixed covariate values. Thisestimator for the conditional distribution function at a given value of thecovariate involves smoothing with Gasser-Müller weights. We establishan almost sure asymptotic representation which provides a key tool forobtaining central limit results. To avoid complicated estimation ofasymptotic bias and variance parameters, we propose a resampling methodwhich takes the covariate information into account. An asymptoticrepresentation for the bootstrapped estimator is proved and the strongconsistency of the bootstrap approximation to the conditional distributionfunction is obtained. 相似文献
18.
刻画纵向数据协方差结构有三种可能因素 ,即序列相关 (特别是一阶自相关 )、随机效应和常规的随机误差 (Diggleetal,2 0 0 2 ) .本文研究非线性纵向数据模型的自相关性和随机效应存在性的单个和联合检验 ,得到了检验的score统计量 ,并利用血浆药物渗透数据 (Davidian&Gilinan ,1 995)说明检验方法的应用 . 相似文献
19.
Döhler Sebastian Rüschendorf Ludger 《Statistical Inference for Stochastic Processes》2003,6(3):291-307
We prove that the empirical L
2-risk minimizing estimator over some general type of sieve classes is universally, strongly consistent for the regression
function in a class of point process models of Poissonian type (random sampling processes). The universal consistency result
needs weak assumptions on the underlying distributions and regression functions. It applies in particular to neural net classes
and to radial basis function nets. For the estimation of the intensity functions of a Poisson process a similar technique
yields consistency of the sieved maximum likelihood estimator for some general sieve classes.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
20.
Detecting Change Points in Polynomial Regression Models with an Application to Cable Data Sets 总被引:2,自引:0,他引:2
Yin-caiTang He-liangFei 《应用数学学报(英文版)》2004,20(4):541-546
In this paper, the Schwarz Information Criterion (SIC) is used to detect the change points in polynomial regression models. Switching quadratic regression models with same amount of model deviation and switching polynomial regression models with different amount of model deviation for different segments of regression are considered. The number of separate regimes and their corresponding regression orders are assume to be known. The method is then applied to cable data sets and the change points are successfully detected. 相似文献