首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文运用循环伏安方法研究十六烷基三甲基溴化铵(CTAB)在Au(111)电极上的吸附行为. 首次给出CTAB在Au(111)电极上的循环伏安曲线,其0.18 V、0.27 V有两对可逆的特征电流尖峰,均受扩散控制,且与卤素离子种类有关. 研究表明,烷基铵阳离子的吸脱附及吸附层相转变与Au(111)电极表面结构密切相关.  相似文献   

2.
本文研究BMIPF6离子液体中Au(111)和Pt(111)表面Ge的电沉积行为. 循环伏安法测试结果表明,在含0.1 mol·L-1 GeCl4的BMIPF6溶液Au(111)和Pt(111)表面均有两个与Ge沉积过程相关的还原峰. 第一个还原峰包含了Ge4+还原成Ge2+及Ge的欠电位沉积,第二个还原峰对应Ge的本体沉积. 现场扫描隧道显微镜研究结果表明,Ge在Au(111)和Pt(111)表面均有两层欠电位沉积. 第一层欠电位沉积厚度约为0.25 nm、形貌平整、带有缝隙的亚单层结构. 第二层欠电位沉积形貌相对粗糙的点状团簇结构. 该欠电位沉积过程伴随表面合金化.  相似文献   

3.
利用电化学技术及扫描隧道显微镜(STM),于0.1mol/LHClO4溶液中研究了Schiff碱N-aete-N在单晶Au(111)面上所形成的自组装单分子膜(SAMs)的电化学性质及结构.N-aete-N在Au(111)电极表面的吸附抑制了金的阳极氧化,同时使固/液界面双层电容明显降低.观察到N-aete-NSAMs的高分辨STM图像.N-aete-N分子在Au(111)表面上以(6×7)结构单胞呈二维有序排列,其表面浓度为5.5×10-11mol/cm2.  相似文献   

4.
赵新飞  陈浩  吴昊  王睿  崔义  傅强  杨帆  包信和 《物理化学学报》2018,34(12):1373-1380
利用NO2或O2作为氧化剂,研究了氧化锌在Au(111)和Cu(111)上的生长和结构。NO2表现了更好的氧化性能,有利于有序氧化锌纳米结构或薄膜的生长。在Au(111)和Cu(111)这两个表面上,化学计量比氧化锌都形成非极性的平面化ZnO(0001)的表面结构。在Au(111)上,NO2气氛下室温沉积锌倾向于形成双层氧化锌纳米结构;而在更高的沉积温度下,在NO2气氛中沉积锌则可同时观测到单层和双层氧化锌纳米结构。O2作为氧化剂时可导致形成亚化学计量比的ZnOx结构。由于铜和锌之间的强相互作用会促进锌的体相扩散,并且铜表面可以被氧化形成表面氧化物,整层氧化锌在Cu(111)上的生长相当困难。我们通过使用NO2作为氧化剂解决了这个问题,生长出了覆盖Cu(111)表面的满层有序氧化锌薄膜。这些有序氧化锌薄膜表面显示出莫尔条纹,表明存在一个ZnO和Cu(111)之间的莫尔超晶格。实验上观察到的超晶格结构与最近理论计算提出的Cu(111)上的氧化锌薄膜结构相符,具有最小应力。我们的研究表明,氧化锌薄膜的表界面结构可能会随氧化程度或氧化剂的不同而变化,而Cu(111)的表面氧化也可能影响氧化锌的生长。当Cu(111)表面被预氧化成铜表面氧化物时,ZnOx的生长模式会发生变化,锌原子会受到铜氧化物晶格的限域形成单位点锌。我们的研究表明了氧化锌的生长需要抑制锌向金属基底的扩散,并阻止亚化学计量比ZnOx的形成。因此,使用原子氧源有利于在Au(111)和Cu(111)表面上生长有序氧化锌薄膜。  相似文献   

5.
本文通过密度泛函理论和分子动力学模拟方法研究了异氰衍生物在Au(111)表面的吸附和自组装。分别采用平板模型和簇模型对苯异氰的吸附进行了密度泛函理论计算。利用自己建立的Au-C力场参数模拟了2-isocyanoazulene 和1,3-diethoxycarbonyl-2-isocyanoazulene 在 Au(111)的自组装。通过计算得到顶位吸附是最稳定的;通过模拟得出异氰衍生物确实能在Au(111)表面形成有序的面对边自组装单层,并且分子都能垂直位于Au(111)表面上。  相似文献   

6.
用循环伏安法(CV)和电化学扫描隧道显微镜(ECSTM)在HClO4溶液中研究了配对碱基腺嘌呤(Adenine,A)与胸腺嘧啶(Thymine,T)在Au(111)电极上的共吸附行为.CV曲线表明,A和T的电化学共吸附行为更接近于A的电化学吸附行为.高分辨STM图像显示,在物理吸附区域碱基A和T分子之间通过氢键作用形成一种不同于单组分的网络结构.根据STM图像提出一个可能的模型,并给出了在Au(111)电极上共吸附时A和T分子之间可能的氢键作用方式.  相似文献   

7.
甲醇在Au(111)表面吸附的密度泛函研究   总被引:2,自引:0,他引:2  
 采用基于第一性原理的密度泛函理论和周期平板模型相结合的方法,对CH3OH分子在Au(111)表面top, fcc, hcp和bridge位的吸附模型进行了构型优化、能量计算以及Mulliken布居分析,结果表明top位是较有利的吸附位. 吸附的CH3OH解离产生甲氧基CH3O和H, 对它们在Au(111)面的吸附进行的计算表明, bridge和fcc位分别是二者的最佳吸附位. 对过渡态的计算给出了CH3OH在Au表面解离吸附的可能机理: 首先发生 O-H 键的断裂,继而生成甲氧基中间体.  相似文献   

8.
采用密度泛函理论(DFT), 选取DMol3程序模块, 对噻吩在M(111) (M=Pd, Pt, Au)表面上的吸附行为进行了探讨. 通过对噻吩在不同底物金属上的吸附能、吸附构型、Mulliken 电荷布居、差分电荷密度以及态密度的分析发现, 噻吩在Pd(111)面上的吸附能最大, Pt(111)面次之, Au(111)面最小. 吸附后, 噻吩在Au(111)面上的构型几乎保持不变, 最终通过S端倾斜吸附于top 位; 噻吩在Pd(111)及Pt(111)面上发生了折叠与变形, 环中氢原子向上翘起, 最终通过环平面平行吸附于hollow 位. 此外, 噻吩环吸附后芳香性遭到了破坏, 环中碳原子发生sp3杂化, 同时电子逐渐由噻吩向M(111)面发生转移, M(111)面上的部分电子也反馈给了噻吩环中的空轨道, 这种协同作用最终导致了噻吩分子稳定吸附于M(111)面.  相似文献   

9.
采用密度泛函理论(DFT),选取DMol3程序模块,对噻吩在M(111)(M=Pd,Pt,Au)表面上的吸附行为进行了探讨.通过对噻吩在不同底物金属上的吸附能、吸附构型、Mulliken电荷布居、差分电荷密度以及态密度的分析发现,噻吩在Pd(111)面上的吸附能最大,Pt(111)面次之,Au(111)面最小.吸附后,噻吩在Au(111)面上的构型几乎保持不变,最终通过S端倾斜吸附于top位;噻吩在Pd(111)及Pt(111)面上发生了折叠与变形,环中氢原子向上翘起,最终通过环平面平行吸附于hollow位.此外,噻吩环吸附后芳香性遭到了破坏,环中碳原子发生sp3杂化,同时电子逐渐由噻吩向M(111)面发生转移,M(111)面上的部分电子也反馈给了噻吩环中的空轨道,这种协同作用最终导致了噻吩分子稳定吸附于M(111)面.  相似文献   

10.
采用基于密度泛函理论的第一性原理方法和平板模型研究了CH3SH分子在Au(111)表面的吸附构型和电子结构. 系统地计算了S原子在不同位置以不同方式吸附的系列构型, 计算结果表明, CH3SH分子倾向于吸附在top位上, S-C键相对于Au表面法线的夹角为62°~78°|而S-H键断裂后CH3S_H则倾向于吸附在bri-fcc位上, S-C键相对于Au(111)表面法线的夹角为49°~57°. 比较分析CH3SH分子和CH3S_H的吸附, 发现CH3SH分子倾向于不解离吸附, 表面温度的提升和缺陷的出现可能促使S-H键的断裂. 通过比较S原子在独立的CH3SH分子和吸附状态下的局域态密度, 发现S-H键断裂后S原子和表面的键合强于S-H键未断裂时S原子和表面的键合. 扫描隧道显微镜(STM)图像模拟显示了CH3SH和CH3S_H在Au(111)表面吸附的3个典型的STM图像.  相似文献   

11.
甲硫醇在Au(111)表面不同覆盖度下吸附的第一性原理研究   总被引:1,自引:0,他引:1  
采用第一性原理方法研究了五种覆盖度下甲硫醇在Au(111)面的吸附构型和吸附能. 分别对于S-H解离前CH3SH和S-H解离后CH3S, 计算其在不同覆盖度下的吸附结构和能量. 结果显示各种覆盖度下CH3SH都优先吸附于top位, 倾斜角为70°±2°, 在低覆盖度(1/12, 1/9, 1/8)下的吸附能最大, 为0.33~0.35 eV; 而CH3S在各种覆盖度下稳定吸附于bri-fcc位, 倾斜角为48.3°~58.5°, 低覆盖度下的吸附能为2.08 eV. 对于CH3SH和CH3S的吸附, 吸附能均随覆盖度的增大而减小. 重点研究了范德华力对高覆盖度吸附的影响. 在覆盖度为1/3时, 采用DFT-D2方法, 分别计算了CH3SH和CH3S的吸附, 结果显示范德华力使吸附物和Au表面的距离减小, 同时使CH3SH和CH3S的吸附能分别增大为0.59 eV和2.27 eV. DFT-D2方法修正使CH3SH的结果更接近实验结论, 但使CH3S的结果偏离实验值.  相似文献   

12.
颜佳伟  商旺火  吴琼  毛秉伟 《电化学》2005,11(2):140-145
本文研究比较Sb(III)在Au(111)和Au(100)电极上的不可逆吸附与还原和Sb的欠电位沉积行为及其相互影响.现场扫描隧道显微镜和循环伏安法测试结果表明,基底表面结构不仅影响阴离子的吸附行为和Sb的吸附结构,而且还影响其自身结构的稳定性.在Au(111)表面,致密无序膜的SbO+不可逆吸附层还原后基本保持原有的无序结构;而在Au(100)表面,由于SO42-的共吸附,不可逆吸附物种还原后形成(2×2)有序结构.在Au(111)表面上,Sb的欠电位沉积伴随显著的合金化,且因表面有序结构的破坏而形成沟道状二维结构;但对Au(100)表面,由于其晶格和尺寸与稳定的AuSb2合金之(100)面有较好的匹配性,使Au与Sb得以形成有序的表面化合物,从而避免了欠电位沉积过程中的表面合金化问题,进一步体现基底结构的敏感性和重要性.  相似文献   

13.
本文针对BMIPF6 和OMIPF6两种离子液体,在电极表面远离零电荷电位且以负电荷表面电位下,运用AFM力曲线详细地研究了其与Au(111)单晶电极界面所形成的层状结构与温度的关联. 在15 ~ 40 oC的温度范围内,温度越低其离子液体层状结构越稳定. 温度对OMIPF6离子液体层状结构的稳定性和数目的影响较BMIPF6缓和:温度变化5 oC,OMIPF6靠近表面第一层层状结构的力值变化仅为1 ~ 2 nN,而BMIPF6第一层层状结构的力值变化为3 ~ 5 nN;较低温下,BMIPF6中层状结构的数目有所增加,而OMIPF6的层状数目始终保持两层,且随温度的变化并不敏感. 这可归因于两种离子液体的阳离子尺寸以及与电极表面的作用方式和强度不同;同时,OMIPF6较粘稠,其热运动受温度的影响不甚敏感.  相似文献   

14.
Melamine and melem molecules are widely used precursors for synthesizing graphitic carbon nitride (g-C3N4), the latter also a hot two-dimensional material with photocatalytic applications. The molecular structures of both are respectively identical to the repeating units of two distinct g-C3N4 phases. In this work, the adsorption and self-assembly of melamine and melem on an Au(111) surface were investigated with low-temperature scanning tunneling microscopy (STM). Particularly, the patterns of hydrogen bonds (HBs) in their assemblies were identified and compared. It was found that melamine can only form one type of HB and two kinds of assembly structures, whereas melem can form three types of HBs and six kinds of assembly structures in total. Moreover, the involved HBs can be transformed by tip manipulation. These findings may provide a new strategy for tuning the functionality of surface self-assemblies by manipulating intermolecular hydrogen bonds. This also paves a route for the in situ synthesis of g-C3N4 on metallic surfaces and subsequent investigations of their physicochemical properties.  相似文献   

15.
应用循环伏安法和现场扫描隧道显微镜研究了在HClO4和H2SO4两种溶液中Sb于Cu(111)和Cu(100)电极上的欠电位沉积.结果表明,不同的表面原子排列和强吸附阴离子的存在将明显影响Sb的欠电位沉积行为.在结构较为开放的Cu(100)表面,Sb形成的欠电位沉积层结构也较为开放,并且伴随着表面合金的形成;而在密堆积的Cu(111)表面上,Sb形成了致密的单层结构.又当Cu(111)表面存在强吸附的SO42-时,Sb原子首先在SO42-吸附层与Cu表面交接的新台阶处成核,随后通过取代SO42-向上一层晶面发展,表现出独特的成核—生长行为;而在弱吸附的HClO4溶液中,Sb的欠电位沉积系以在晶面上随机形成一些单原子层高度的Sb岛为特征.在Cu(100)表面,通过SO42-的诱导共吸附,欠电位沉积的Sb原子形成了开放性更大的(4×4)结构,不同于在HClO4溶液中所形成的(22×22)R45°结构.  相似文献   

16.
三种Au(111)催化水煤气变换反应机理的比较   总被引:1,自引:0,他引:1  
采用密度泛函理论对三种水煤气变换反应(WGSR)机理(氧化还原机理、羧基机理、甲酸基的生成机理)在Au(111)面上的反应历程进行详细讨论.通过对表面吸附物种(H2O、CO、OH、O、H、CO2、COOH、HCOO)的吸附行为进行研究,得到最佳活性吸附中心.对三种机理中的14个基元反应的活化能进行分析,得出WGSR在Au(111)上按照羧基机理和氧化还原机理进行的可能性较大,按照甲酸基的生成机理进行的可能性较小.相比较羧基机理和氧化还原机理,反应更有可能按照羧基机理进行,最佳反应途径为H2O-H→OH+CO→COOH+OH→CO2.  相似文献   

17.
Au-Cu双金属合金纳米颗粒对包括CO氧化和CO2还原等在内的多个反应有较好的催化活性,然而关于其表面性质的研究却相当匮乏。在此工作中,我们通过对低覆盖度的Au/Cu(111)和Cu/Au(111)双金属薄膜退火,制备出了单原子级分散的Au/Cu(111)和Cu/Au(111)合金化表面,并利用高分辨扫描隧道显微镜(STM)和扫描隧道谱(STS)进一步研究了掺杂原子的电子性质及其对CO吸附行为的影响。研究发现,分散在Cu(111)表面的表层和次表层Au单原子在STM上表现出不同衬度。在-0.5 e V附近,前者表现出相较于Cu(111)明显增强的电子态密度,而后者则明显减弱。吸附实验表明表层Au单原子对CO的吸附能力并没有得到增强,甚至会减弱其周围Cu原子的吸附能力。与Au在Cu(111)表面较好的分散相反,Cu原子倾向于钻入Au(111)的次表层,并且形成多原子聚集体。且Cu原子受Au(111)衬底吸电子作用的影响,其对CO的吸附能力明显减弱。这个研究结果揭示了合金表面的微观结构与性质的关联,为进一步阐明Au-Cu双金属催化剂的表面反应机理提供参考。  相似文献   

18.
为了克服传统电化学电极反应液需要量较大、预处理繁琐和耗时的不足,本研究通过腐蚀、键合、光刻、氧化、扩散和溅射等工艺在75 mm×25 mm光学玻片上制备了基于微机械电子系统的电化学电极阵列。该电极阵列含有16个电极单元,每个单元之间的差异性≤3.7%;电极表面Rct=28Ω,预处理时间1 min;反应液量1~50μL。用此电极阵列构建的生物传感器实现了对大肠杆菌特异性靶分子序列的检测,检测下限达到1×10-8mol/L。结果表明,此电化学电极阵列能满足多通道微量检测的需求,在其表面可方便地进行生物功能化修饰,应用范围广,实用性强。  相似文献   

19.
采用密度泛函理论方法研究了噻吩在Au(111)面上的吸附模式, 并探讨了其在Au(111)面上可能的加氢脱硫反应机理, 对不同机理下各个基元反应的过渡态进行了筛选, 得到了各个步骤的能量变化及所需活化能.计算结果表明, 噻吩在Au(111)面上以S端倾斜吸附在Top位时最稳定.直接脱硫机理表明, 其所需活化能较低, 升高温度有利于提高脱硫反应产率, 但脱硫产物较难控制; 间接脱硫机理表明, 脱硫反应最可能按照加氢异构方式进行, 降低温度有利于脱硫反应产率的提高.随着反应的进行, 噻吩环中的C—S键键长逐渐增大, 键能逐渐减小, 有利于C—S键断裂, 具体步骤为:(1) C4H4S+H2α,α-C4H6S; (2) α,α-C4H6S+H2C4H8S; (3) C4H8S+H2C4H10+S, 其中S原子的脱去步骤所需活化能最高, 为反应的限速步骤.  相似文献   

20.
采用密度泛函理论计算了巴豆醛4种构型的稳定性,并选取最优构型进一步研究了其Au(111)面上的吸附及选择性加氢机理.计算结果表明,具有E-(s)-trans构型的巴豆醛稳定性最高.当巴豆醛通过C O吸附于Au(111)面的顶位时,该构型吸附能最大,吸附模型最稳定;巴豆醛向Au(111)表面转移电子0.045e,且其p轨道与金属表面的d轨道发生较强相互作用,使得巴豆醛的键级减弱.此外,通过分析各基元反应的活化能、反应热以及构型变化可知,巴豆醛在Au(111)面上按照2,1-加成机理(部分加氢机理)生成巴豆醇的可能性最大,且降低温度有利于反应转化率的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号