首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The solution for the finite amplitude, uniaxial motion of a Mooney-Rivlin oscillator on suspension, compression, or horizontal supports, and for arbitrary initial data is presented. The problem is unusual. Depending upon the initial data, the type of support, the amount of static stretch, and the value of a Mooney-Rivlin parameter, the solution may have one of three distinct possible periodic forms. The three cases are solved exactly, and simple bounds on the period of the finite motion are given. Some special situations are illustrated, both analytically and graphically. The effect of the amount of static stretch on the period of superimposed small amplitude oscillations also is described. The appropriate results are compared with those obtained previously for the neo-Hookean model.Dedicated to Clifford Truesdell, in admiration and gratitude, on the occasion of the twenty-fifth anniversary of the Society for Natural Philosophy.  相似文献   

2.
Simultaneous axial and torsional oscillations of a rigid disk attached to an elastomeric shaft are investigated. Five cases are solved exactly. The uncoupled, small amplitude axial and torsional oscillations of the disk are investigated for neo-Hookean and Mooney-Rivlin shafts with static stretch. The finite torsional vibration of the load superimposed on a static stretch of the shaft is studied for the Mooney-Rivlin model. Solutions for both small and finite amplitude, uniaxial vibrations of the body superimposed on a pretwisted neo-Hookean shaft with static stretch are derived. Simple bounds on the period for the finite motion are provided; and various universal frequency relations for neo-Hookean and Mooney-Rivlin materials are identified.Finally, the main problem of finite, uniaxial vibrations accompanied by a small twisting motion is studied for the neo-Hookean model. The exact periodic solution for the axial response is obtained; and the coupled, small torsional motion is then determined by Hill's equation. A stability criterion for the Mathieu-Hill equation is used to obtain stability maps in a physical parameter space. Geometrical conditions sufficient for universal stability of the motion are read from this graph. Instability of the torsional oscillation, the beating phenomenon and exchange of energies, and the relation of the stability diagram to amplitude bounds on the uncoupled, linearized motion sufficient to assure universal stability predicted for small amplitude vibrations, are discussed and described graphically with the aid of a numerical model. It is shown that an unstable configuration may be stabilized by increasing the diameter of the disk.  相似文献   

3.
The problem of the finite amplitude, free vertical oscillatory motion of a massattached to a neo-Hookean rubberlike string is solved exactly in terms of elementary functions and the Heuman lambda function, which is related to the elliptic integral of the third kind. Hence, the period of the oscillations for the various possible motions may be computed from tables of values of the complete lambda function. It is shown that the results differ significantly from those obtained elsewhere for a string having linearly elastic behavior; and all of the results are described graphically.  相似文献   

4.
The undamped, finite amplitude horizontal motion of a load supported symmetrically between identical incompressible, isotropic hyperelastic springs, each subjected to an initial finite uniaxial static stretch, is formulated in general terms. The small amplitude motion of the load about the deformed static state is discussed; and the periodicity of the arbitrary finite amplitude motion is established for all such elastic materials for which certain conditions on the engineering stress and the strain energy function hold. The exact solution for the finite vibration of the load is then derived for the classical neo-Hookean model. The vibrational period is obtained in terms of the complete Heuman lambda-function whose properties are well-known. Dependence of the period and hence the frequency on the physical parameters of the system is investigated and the results are displayed graphically.  相似文献   

5.
Vortex‐induced vibrations of a circular cylinder placed in a uniform flow at Reynolds number 325 are investigated using a stabilized space–time finite element formulation. The Navier–Stokes equations for incompressible fluid flow are solved for a two‐dimensional case along with the equations of motion of the cylinder that is mounted on lightly damped spring supports. The cylinder is allowed to vibrate, both in the in‐line and in the cross‐flow directions. Results of the computations are presented for various values of the structural frequency of the oscillator, including those that are sub and superharmonics of the vortex‐shedding frequency for a stationary cylinder. In most of the cases, the trajectory of the cylinder corresponds to a Lissajou figure of 8. Lock‐in is observed for a range of values of the structural frequency. Over a certain range of structural frequency (Fs), the vortex‐shedding frequency of the oscillating cylinder does not match Fs exactly; there is a slight detuning. This phenomenon is referred to as soft‐lock‐in. Computations show that this detuning disappears when the mass of the cylinder is significantly larger than the mass of the surrounding fluid it displaces. A self‐limiting nature of the oscillator with respect to cross‐flow vibration amplitude is observed. It is believed that the detuning of the vortex‐shedding frequency from the structural frequency is a mechanism of the oscillator to self‐limit its vibration amplitude. The dependence of the unsteady solution on the spatial resolution of the finite element mesh is also investigated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
The undamped, finite amplitude, periodic motion of a load supported symmetrically by arbitrary isotropic, elastic shear mountings is investigated. Conditions on the shear response function sufficient to guarantee periodic motions for finite shearing with arbitrary initial data are provided. Some general results applicable for all simple shearing oscillators in the class are derived and illustrated graphically. The mechanical response of the general nonlinear shearing oscillator is compared with the response of a certain linear oscillator of comparable design. As consequence, certain static and dynamic aspects of the motion of an arbitrary nonlinear oscillator supported by shear springs are compared with those of a simple, linear oscillator for which the response is well-known and readily determined for the same initial data. The effect of a finite static shear deformation on the frequency equation for superimposed, small amplitude vibrations of the load is examined. The general analysis is applied to a class of hyperelastic biological tissues; and the frequency relation for finite amplitude oscillations of a load supported by soft tissue is derived. The finite amplitude oscillatory shearing of a general isotropic elastic continuum is described; and three universal relations connecting the stress and the oscillatory shearing deformation for every isotropic elastic material are presented.  相似文献   

7.
横观各向同性超弹性球壳的有限振动   总被引:4,自引:0,他引:4  
应用有限变形动力学理论研究了一种横观各向同性不可压超弹性材料球壳在表面突加均布拉伸载荷作用下的有限振动问题.给出了球壳振动的振幅和外加载荷之间的关系,得到了,球壳振动的相同和近似的周期,讨论了球壳振动的振幅、相图及振动的周期和材料各向异性程度的关系.  相似文献   

8.
Free vibrations of a circular cylinder of low non-dimensional mass are investigated at low Reynolds numbers. Computations are carried out for 5% blockage. Lock-in is observed for a range of Re and is accompanied with hysteresis at both lower as well as higher Re ends of the synchronisation/lock-in region. It is well known that the lock-in regime for free vibrations depends on the non-dimensional mass of the oscillator. The results from the present computations are compared with the data for forced vibrations from Koopmann (Journal of Fluid Mechanics, 28, 501–512, 1967) on a Y max/D vs. f* plot, where Y max is the maximum oscillation amplitude and f* is the ratio of cylinder vibration frequency to the vortex shedding frequency for a stationary cylinder. Good agreement is observed for the critical amplitude needed for onset of synchronisation between the forced and free vibrations. The results from the free vibrations are compared to the predictions from the linear oscillator model by assuming that the forces on the cylinder are unaffected as a result of vibrations. It is found that, for low mass oscillators, the modification of vortex shedding frequency and lift coefficient due to cylinder oscillations leads to the enhancement of the lock-in regime.  相似文献   

9.
For axially symmetric deformations of the perfectly elastic neo-Hookean and Mooney materials, formal series solutions are determined in terms of expansions in appropriate powers of 1/R, where R is the cylindrical polar coordinate for the material coordinates. Remarkably, for both the neo-Hookean and Mooney materials, the first three terms of such expansions can be completely determined analytically in terms of elementary integrals. From the incompressibility condition and the equilibrium equations, the six unknown deformation functions, appearing in the first three terms can be reduced to five formal integrations involving in total seven arbitrary constants A, B, C, D, E, H and k 2, and a further five integration constants, making a total of 12 integration constants for the deformation field. The solutions obtained for the neo-Hookean material are applied to the problem of the axial compression of a cylindrical rubber tube which has bonded metal end-plates. The solution so determined is approximate in two senses; namely as an approximate solution of the governing equations and for which the stress free and displacement boundary conditions are satisfied in an average manner only. The resulting load-deflection relation is shown graphically. The solution so determined, although approximate, attempts to solve a problem not previously tackled in the literature.   相似文献   

10.
An algorithm is presented to analyze the free vibration in a system composed of a cable with discrete elements, e.g., a concentrated mass, a translational spring, and a harmonic oscillator. The vibrations in the cable are modeled and analyzed with the Lagrange multiplier formalism. Some fragments of the investigated structure are modeled with continuously distributed parameters, while the other fragments of the structure are modeled with discrete elements. In this case, the linear model of a cable with a small sag serves as a continuous model, while the elements, e.g., a translational spring, a concentrated mass, and a harmonic oscillator, serve as the discrete elements. The method is based on the analytical solutions in relation to the constituent elements, which, when once derived, can be used to formulate the equations describing various complex systems compatible with an actual structure. The numerical analysis shows that, the method proposed in this paper can be successfully used to select the optimal parameters of a system composed of a cable with discrete elements, e.g., to detune the frequency resonance of some structures.  相似文献   

11.
A general asymptotic plane strain crack tip stress field is constructed for linear versions of neo-Hookean materials, which spans a wide variety of special cases including incompressible Mooney elastomers, the compressible Blatz–Ko elastomer, several cases of the Ogden constitutive law and a new result for a compressible linear neo-Hookean material. The nominal stress field has dominant terms that have a square root singularity with respect to the distance of material points from the crack tip in the undeformed reference configuration. At second order, there is a uniform tension parallel to the crack. The associated displacement field in plane strain at leading order has dependence proportional to the square root of the same coordinate. The relationship between the amplitude of the crack tip singularity (a stress intensity factor) and the plane strain energy release rate is outlined for the general linear material, with simplified relationships presented for notable special cases.  相似文献   

12.
We consider the dynamics of a typical airfoil section both in forced and free oscillations and investigate the importance of the added mass terms, i.e. the second derivatives in time of the pitch angle and plunge displacement. The structural behaviour is modelled by linear springs in pitch and plunge and the aerodynamic loading represented by our interpretation of the state-space version of the Leishman–Beddoes semi-empirical model. The added mass terms are often neglected since this leads to an explicit system of ODEs amenable for solution using standard ODE solvers. We analyse the effect of neglecting the added mass terms in forced oscillations about a set of mean angles of incidence by comparing the solutions obtained with the explicit and implicit systems of ODEs and conclude that their differences amount to a time lag that increases at a constant rate with increases of the reduced frequency. To determine the effect of the added mass terms in free oscillations, we introduce a spring offset angle to obtain static equilibrium positions at various degrees of incidence. We analyse the stability of the explicit and implicit aeroelastic systems about those positions and compare the locations of the respective flutter points calculated as Hopf bifurcation points. For low values of the spring offset angle, added mass effects are significant for low values of the mass ratio, or the ratio of natural frequencies, of the aeroelastic system. For high values of the spring offset angle, corresponding to stall flutter, we observe that their effect is greater for large values of the mass ratio.  相似文献   

13.
在强非线性有限元分析中 ,当采用隐格式方法得不到预期结果时 ,显格式技术是解决问题的有效途径之一。采用显格式分析方法 ,要解决两个问题 ,一是合理选择载荷作用时间 ;二是控制系统的惯性效应。本文选用了 5个时间历程函数 ,首先将它们应用于线性弹簧振子分析中 ,得到了响应的解析表达式并做了误差分析 ,通过作图的方式 ,显示了各函数动静模拟的优劣。根据对线性弹簧振子的分析 ,得到了选择载荷作用时间的重要参数——线性系统的最小自然周期。随后对带孔口的薄板平面应力问题做非线性有限元动静分析 ,得到了一些有价值的结论 ,可供工程应用参考  相似文献   

14.
The finite amplitude, free vibrational characteristics of a simple mechanical system consisting of an axisymmetric rigid body supported by a highly elastic tubular shear spring subjected to axial, rotational, and coupled shearing motions are studied. Two classes of elastic tube materials are considered: a compressible material whose shear response is constant, and an incompressible material whose shear response is a quadratic function of the total amount of shear. The class of materials with constant shear response includes the incompressible Mooney-Rivlin material and certain compressible Blatz-Ko, Hadamard, and other general kinds of models. For each material class, the quasi-static elasticity problem is solved to determine the telescopic and gyratory shearing deformation functions needed to evaluate the elastic tube restoring force and torque exerted on the body. For all materials with constant shear response, the differential equations of motion are uncoupled equations typical of simple harmonic oscillators. Hence, exact solutions for the forced vibration of the system can be readily obtained; and for this class, engineering design formulae for the load-deflection relations are discussed and compared with experimental results of others'. For the quadratic material, however, the general motion of the body is characterized by a formidable, coupled system of nonlinear equations. The free, coupled shearing motion for which either the axial or the azimuthal shear deformation may be small is governed by a pair of equations of the Duffing and Hill types. On the other hand, the finite amplitude, pure axial and pure rotational motions of the load are described by the classical, nonlinear Duffing equation alone. A variety of problems are solved exactly for these separate free vibrational modes, and a number of physical results are presented throughout.  相似文献   

15.
The Mullins effect in the oscillatory motion of a load under gravity and attached to a stress-softening, neo-Hookean rubber string is investigated. Equations for the small amplitude vertical oscillations of the load superimposed on the finite static stretch of both the virgin and stress-softened cords, the latter subjected to varying degrees of preconditioning, are derived. The vibrational frequency of the small motion exhibits behavior similar to that observed in experiments by others on postmortem, human aortic tissue for which no stress-softening is reported. Standard numerical methods are applied to study the finite amplitude motion of the load in the stress-softened case. The resultant motions and their various physical aspects under free-fall and general initial conditions are described in several examples. Oscillations that engage all three phases of motion consisting of the suspension, the free-flight, and the retraction of the load in its general vertical motion are illustrated. Effects due to the degree of stress-softening are discussed; and the motion response for two values of the model softening parameter is compared in several examples. All results are illustrated graphically and numerous tabulated numerical results are provided.   相似文献   

16.
A non-autonomous complex Ginzburg-Landau equation (CGLE) for the finite amplitude of convection is derived, and a method is presented here to determine the amplitude of this convection with a weakly nonlinear thermal instability for an oscillatory mode under throughflow and gravity modulation. Only infinitesimal disturbances are considered. The disturbances in velocity, temperature, and solutal fields are treated by a perturbation expansion in powers of the amplitude of the applied gravity field. Throughflow can stabilize or destabilize the system for stress free and isothermal boundary conditions. The Nusselt and Sherwood numbers are obtained numerically to present the results of heat and mass transfer. It is found that throughflow and gravity modulation can be used alternately to heat and mass transfer. Further, oscillatory flow, rather than stationary flow, enhances heat and mass transfer.  相似文献   

17.
In this paper, the complicated nonlinear dynamics of the harmonically forced quasi-zero-stiffness SD (smooth and discontinuous) oscillator is investigated via direct numerical simulations. This oscillator considered that the gravity is composed of a lumped mass connected with a vertical spring of positive stiffness and a pair of horizontally compressed springs providing negative stiffness, which can achieve the quasi-zero stiffness widely used in vibration isolation. The local and global bifurcation analyses are implemented to reveal the complex dynamic phenomena of this system. The double-parameter bifurcation diagrams are constructed to demonstrate the overall topological structures for the distribution of various responses in parameter spaces. Using the Floquet theory and parameter continuation method, the local bifurcation patterns of periodic solutions are obtained. Moreover, the global bifurcation mechanisms for the crises of chaos and metamorphoses of basin boundaries are examined by analysing the attractors and attraction basins, exploring the evolutions of invariant manifolds and constructing the basin cells. Meanwhile, additional nonlinear dynamic phenomena and characteristics closely related to the bifurcations are discussed including the resonant tongues, jump phenomena, amplitude–frequency responses, chaotic seas, transient chaos, chaotic saddles, and also their generation mechanisms are presented.  相似文献   

18.
The finite amplitude, free vibrational characteristics of a simple mechanical system consisting of an axisymmetric rigid body supported by a highly elastic tubular shear spring subjected to axial, rotational, and coupled shearing motions are studied. Two classes of elastic tube materials are considered: a compressible material whose shear response is constant, and an incompressible material whose shear response is a quadratic function of the total amount of shear. The class of materials with constant shear response includes the incompressible Mooney-Rivlin material and certain compressible Blatz-Ko, Hadamard, and other general kinds of models. For each material class, the quasi-static elasticity problem is solved to determine the telescopic and gyratory shearing deformation functions needed to evaluate the elastic tube restoring force and torque exerted on the body. For all materials with constant shear response, the differential equations of motion are uncoupled equations typical of simple harmonic oscillators. Hence, exact solutions for the forced vibration of the system can be readily obtained; and for this class, engineering design formulae for the load-deflection relations are discussed and compared with experimental results of others'. For the quadratic material, however, the general motion of the body is characterized by a formidable, coupled system of nonlinear equations. The free, coupled shearing motion for which either the axial or the azimuthal shear deformation may be small is governed by a pair of equations of the Duffing and Hill types. On the other hand, the finite amplitude, pure axial and pure rotational motions of the load are described by the classical, nonlinear Duffing equation alone. A variety of problems are solved exactly for these separate free vibrational modes, and a number of physical results are presented throughout.  相似文献   

19.
This paper deals exclusively with finite amplitude motions in viscoelastic materials for which the stress is the sum of a part corresponding to the classical Mooney-Rivlin incompressible isotropic elastic solid and of a dissipative part corresponding to the classical viscous incompressible fluid. Of particular interest is a finite pseudoplanar elliptical motion which is an exact solution of the equations of motion. Superposed on this motion is a finite shearing motion. An explicit exact solution is presented. It is seen that the basic pseudoplanar motion is stable with respect to the finite superposed shearing motion. Particular exact solutions are obtained for the classical neo-Hookean solid and also for the classical Navier-Stokes equations. Finally, it is noted that parallel results may be obtained for a basic pseudoplanar hyperbolic motion.  相似文献   

20.
In an effort to construct a design tool for a mechanical spring featuring highly nonlinear spring stiffness, compression of truncated elastomeric cones has been studied using nonlinear finite element analyses involving neo-Hookean material law and contact elements. Series of finite element models of various geometric aspect ratios of truncated cones were calculated to form a fundamental database of the design tool. It was found that the compressive stiffness of the rubber cone can be non-dimensionalized with respect to the elastic modulus and a characteristic length of the cone. While the stiffness of the truncated rubber cone appears more linear between 0 and 5% of the compression ratio, the stiffness increases exponentially with progressing compression at higher compression ratios. Regression equations of the non-dimensional axial force and spring stiffness were obtained with reasonable accuracy, compared with the original finite element data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号