首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The primary objective of this paper is to formulate the governing equations of shear deformable beams and plates that account for moderate rotations and microstructural material length scales. This is done using two different approaches: (1) a modified von Kármán non-linear theory with modified couple stress model and (2) a gradient elasticity theory of fully constrained finitely deforming hyperelastic cosserat continuum where the directors are constrained to rotate with the body rotation. Such theories would be useful in determining the response of elastic continua, for example, consisting of embedded stiff short fibers or inclusions and that accounts for certain longer range interactions. Unlike a conventional approach based on postulating additional balance laws or ad hoc addition of terms to the strain energy functional, the approaches presented here extend existing ideas to thermodynamically consistent models. Two major ideas introduced are: (1) inclusion of the same order terms in the strain–displacement relations as those in the conventional von Kármán non-linear strains and (2) the use of the polar decomposition theorem as a constraint and a representation for finite rotations in terms of displacement gradients for large deformation beam and plate theories. Classical couple stress theory is recovered for small strains from the ideas expressed in (1) and (2). As a part of this development, an overview of Eringen׳s non-local, Mindlin׳s modified couple stress theory, and the gradient elasticity theory of Srinivasa–Reddy is presented.  相似文献   

2.
3.
The paper deals with the geometrically non-linear analysis of laminated composite beams, plates and shells in the framework of the first-order transverse shear deformation (FOSD) theory. A central point of the present paper is the discussion of the relevance of five- and six-parameter variants, respectively, of the FOSD hypothesis for large rotation plate and shell problems. In particular, it is shown that the assumption of constant through-thickness distribution of the transverse normal displacements is acceptable only for small and moderate rotation problems. Implications inherent in this assumption that are incompatible with large rotations are discussed from the point of view of the transverse normal strain-displacement relations as well as in the light of an enhanced, accurate large rotation formulation based on the use of Euler angles. The latter one is implemented as an updating process within a Total Lagrangian formulation of the six-parameter FOSD large rotation plate and shell theory. Numerical solutions are obtained by using isoparametric eight-node Serendipity-type shell finite elements with reduced integration. The Riks-Wempner-Ramm arc-length control method is used to trace primary and secondary equilibrium paths in the pre- and post-buckling range of deformation. A number of sample problems of non-linear, large rotation response of composite laminated plate and shell structures are presented including symmetric and asymmetric snap-through and snap-back problems.  相似文献   

4.
This paper is mainly concerned with the construction of a theory of material behavior with infinitesimal strain accompanied by moderate rotation. After introducing a definition for moderate rotation and establishing a number of theorems pertaining to its properties, precise estimates are obtained for the (local) moderate rotation and related kinematical results in terms of infinitesimal strain. For motions which result in small strain accompanied by moderate rotation, the invariance of constitutive equations under arbitrary superposed rigid body motions is discussed with particular reference to an elastic material.  相似文献   

5.
本文从小应变,中小转动问题的弹性薄壳一般方程出发,导出用复未知函数表示的非线性的环壳轴对称变形的基本方程,并用摄动方法分別求解了整环壳和开口环壳问题.所得到的结果与其他作者用数值方法得到的结果吻合很好。  相似文献   

6.
A geometrically non-linear theory is developed for shells of generic shape allowing for third-order thickness and shear deformation and rotary inertia by using eight parameters; geometric imperfections are also taken into account. The geometrically non-linear strain–displacement relationships are derived retaining full non-linear terms in all the 8 parameters, i.e. in-plane and transverse displacements, rotations of the normal and thickness deformation parameters; these relationships are presented in curvilinear coordinates, ready to be implemented in computer codes. Higher order terms in the transverse coordinate are retained in the derivation so that the theory is suitable also for thick laminated shells. Three-dimensional constitutive equations are used for linear elasticity. The theory is applied to circular cylindrical shells complete around the circumference and simply supported at both ends to study initially static finite deformation. Both radially distributed forces and displacement-dependent pressure are used as load and results for different shell theories are compared. Results show that a 6 parameter non-linear shell theory is quite accurate for isotropic shells. Finally, large-amplitude forced vibrations under harmonic excitation are investigated by using the new theory and results are compared to other available theories. The new theory with non-linearity in all the 8 parameters is the only one to predict correctly the thickness deformation; it works accurately for both static and dynamics loads.  相似文献   

7.
IntroductionTheuseoflaminatedcompositesinthin_walledstructuresincreasessothateffectsoftransversesheardeformationscannotbeneglectedandinvokequitecomplexesinnonlinearanalysis.Itiswell_knownthatthenonlinearanalysisoflaminatedplatesandshellscountingfortr…  相似文献   

8.
A new refined first-order shear-deformation plate theory of the Kármán type is presented for engineering applications and a new version of the generalized Kármán large deflection equations with deflection and stress functions as two unknown variables is formulated for nonlinear analysis of shear-deformable plates of composite material and construction, based on the Mindlin/Reissner theory. In this refined plate theory two rotations that are constrained out in the formulation are imposed upon overall displacements of the plates in an implicit role. Linear and nonlinear investigations may be made by the engineering theory to a class of shear-deformation plates such as moderately thick composite plates, orthotropic sandwich plates, densely stiffened plates, and laminated shear-deformable plates. Reduced forms of the generalized Kármán equations are derived consequently, which are found identical to those existe in the literature. Foundation item: the National Natural Science Foundation of China (59675027) Biography: Zhang Jianwu (1954-)  相似文献   

9.
The complete integral of the system of partial differential equations governing the equilibrium bending of elastic plates with transverse shear deformation and transverse normal strain is constructed by means of complex variable methods. The process helps to elucidate the physical meaning of certain analytic constraints imposed on the asymptotic behavior of the solutions and shows that in the case of an infinite plate, any analytic solution has finite energy if and only if the bending and twisting moments, the transverse shear force, the displacements in vertical planes, and two other characteristic quantities vanish at infinity. An example is discussed to illustrate the theory.  相似文献   

10.
A phenomenological definition of classical invariants of strain and stress tensors is considered. Based on this definition, the strain and stress invariants of a shell obeying the assumptions of the Reissner–Mindlin plate theory are determined using only three normal components of the corresponding tensors associated with three independent directions at the shell middle surface. The relations obtained for the invariants are employed to formulate a 15-dof curved triangular finite element for geometrically nonlinear analysis of thin and moderately thick elastic transversely isotropic shells undergoing arbitrarily large displacements and rotations. The question of improving nonlinear capabilities of the finite element without increasing the number of degrees of freedom is solved by assuming that the element sides are extensible planar nearly circular arcs. The shear locking is eliminated by approximating the curvature changes and transverse shear strains based on the solution of the Timoshenko beam equations. The performance of the finite element is studied using geometrically linear and nonlinear benchmark problems of plates and shells.  相似文献   

11.
This paper presents a general nonlinear theory of elastic shells for large deflections and finite strains in reference to a certain natural state. By expanding the displacement components into power series in the coordinate θ3 normal to the undeformed middle surface of shells, the expansions of the Cauchy-Green strain tensors are expressed in terms of these expanded displacement components. Through the modified Hellinger-Reissner variational principle for a three-dimensional elastic continuum, a set of the fundamental shell equations is derived in terms of the expanded Cauchy-Green strain tensors and Kirchhoff stress resultants. The Love-Kirchhoff hypothesis is not assumed and higher order stretching and bending are taken into consideration. For elastic shells of isotropic materials, assuming the strain-energy to be an analytic function of the strain measures, general nonlinear constitutive equations are then derived. Thus, a complete and consistent two-dimensional shell theory incorporating the geometrical and physical nonlinearities is established. The classical theories of shells are directly derivable from the present results by proper truncations of the series.  相似文献   

12.
A general nonlinear theory for the dynamics of elastic anisotropic circular cylindrical shells undergoing small strains and moderate-rotation vibrations is presented. The theory fully accounts for extensionality and geometric nonlinearities by using local stress and strain measures and an exact coordinate transformation, which result in nonlinear curvatures and strain-displacement expressions that contain the von Karman strains as a special case. Moreover, the linear part of the theory contains, as special cases, most of the classical linear theories when appropriate stress resultants and couples are defined. Parabolic distributions of the transverse shear strains are accounted for by using a third-order theory and hence shear correction factors are not required. Five third-order nonlinear partial differential equations describing the extension, bending, and shear vibrations of shells are obtained using the principle of virtual work and an asymptotic analysis. These equations show that laminated shells display linear elastic and nonlinear geometric couplings among all motions.  相似文献   

13.
The present study proposes a nonclassical Kirchhoff plate model for the axisymmetrically nonlinear bending analysis of circular microplates under uniformly distributed transverse loads. The governing differential equations are derived from the principle of minimum total potential energy based on the modified couple stress theory and von Kármán geometrically nonlinear theory in terms of the deflection and radial membrane force, with only one material length scale parameter to capture the size-dependent behavior. The governing equations are firstly discretized to a set of nonlinear algebraic equations by the orthogonal collocation point method, and then solved numerically by the Newton–Raphson iteration method to obtain the size-dependent solutions for deflections and radial membrane forces. The influences of length scale parameter on the bending behaviors of microplates are discussed in detail for immovable clamped and simply supported edge conditions. The numerical results indicate that the microplates modeled by the modified couple stress theory causes more stiffness than modeled by the classical continuum plate theory, such that for plates with small thickness to material length scale ratio, the difference between the results of these two theories is significantly large, but it becomes decreasing or even diminishing with increasing thickness to length scale ratio.  相似文献   

14.
In this paper a set of stability equations for thick cylindrical shells is derived and solved analytically. The set is obtained by integration of the differential stability equations across the thickness of the shell. The effects of transverse shear and the non-linear variation of the stresses and displacements are accounted for with the aid of the higher order shell theory proposed by [Voyiadjis, G.Z. and Shi, G., 1991, A refined two-dimensional theory for thick cylindrical shells, International Journal of Solids and Structures, 27(3), 261–282.]. For a thick shell under external hydrostatic pressure, the stability equations are solved analytically and yield an improved expression for the buckling load. Reference solutions are also obtained by solving numerically the differential stability equations. Both the full set that contains strains and rotations as well as the simplified set that contains rotations only were solved numerically. The relative magnitude of shear strain and rotation was examined and the effect of thickness was quantified. Differences between the benchmark solutions and the analytic expressions based on the refined theory and the classical shell theory are analysed and discussed. It is shown that the new analytic expression provides significantly improved predictions compared to the formula based on thin shell theory.  相似文献   

15.
The two-field dual-mixed Fraeijs de Veubeke variational formulation of three-dimensional elasticity serves as the starting point of the derivation of a dimensionally reduced shell model presented in this paper. The fundamental variables of this complementary energy-based variational principle are the not a priori symmetric stress tensor and the skew-symmetric rotation tensor. The tensor of first-order stress functions is applied to satisfy translational equilibrium, while the rotation tensor plays the role of a Lagrange multiplier to ensure rotational equilibrium. The volumetric locking-free shell model uses unmodified three-dimensional constitutive equations, and no classical kinematical hypotheses are employed during the derivation. The numerical performance of the related low-order h-, and higher-order p-version finite elements developed for axisymmetrically loaded cylindrical shells is investigated by two representative model problems. It is numerically proven that no negative effect can be experienced when the thickness is small and tends to zero.  相似文献   

16.
Dynamic von-Kármán plate models consist of three coupled non-linear, time-dependent partial differential equations. These equations have been recently solved numerically [Kirby, R., Yosibash, Z., 2004. Solution of von-Kármán dynamic non-linear plate equations using a pseudo-spectral method. Comp. Meth. Appl. Mech. Eng. 193 (6–8) 575–599 and Yosibash, Z., Kirby, R., Gottlieb, D., 2004. Pseudo-spectral methods for the solution of the von-Kármán dynamic non-linear plate system. J. Comp. Phys. 200, 432–461] by the Legendre-collocation method in space and the implicit Newmark-β scheme in time, where highly accurate approximations were realized.Due to their complexity, these equations are often reduced by discarding some of the terms associated with time derivatives which are multiplied by the plate thickness squared (being a small parameter). Because of the non-linearities in the system of equations we herein quantitatively investigate the influence of these a-priori assumption on the solution for different plate thicknesses. As shown, the dynamic solutions of the so called “simplified von-Kármán” system do not differ much from the complete von-Kármán system for thin plates, but may have differences of few percent for plates with thicknesses to length ratio of about 1/20. Nevertheless, when investigating the modeling errors, i.e. the difference between the various von-Kármán models and the fully three-dimensional non-linear elastic plate solution, one realizes that for relatively thin plates (thickness is 1/20 of other typical dimensions), this difference is much larger. This implies that the simplified von-Kármán plate model used frequently in the literature is as good as an approximation as the complete (and more complicated) model. As a side note, it is shown that the dynamic response of any of the von-Kármán plate models, is completely different compared to the linearized plate model of Kirchhoff–Love for deflections of an order of magnitude as the plate thickness.  相似文献   

17.
Übersicht Eine Möglichkeit der Entwicklung einer allgemeinen Theorie für Platten und Schalen besteht in der Modellierung des Flächentragwerks durch ein zweidimensionales deformierbares Kontimmm und der direkten Ableitung der kinematischen Beziehungen, der Bewegungsgleichungen und der konstitutiveu Gleichungen. Eine so erhaltene Theorie ist mathematisch und physikalisch widerspruchsfrei, jedoch ist es für ihre Anwendung notwendig, die sogenannten Ersatzeigenschaften zu ermitteln. Im Beitrag wird eine geometrisch und physikalisch lineare Theorie behandelt. Jeder Punkt des Kontinuums ist ein infinitesimal kleiner Starrkörper mit nur 5 Freiheitsgraden (3 Translationen, 2 Rotationen). Bei Annahme dieser Einschränkungen gelingt es, eine Theorie direkt abzuleiten, wobei alle Ersatzeigenschaften des Flächentragwerks bestimmt werden können. Im Beitrag werden die Möglichkeiten der allgemeinen Theorie am Beispiel isotropen viskoelastischen Materials mit über die Dicke veränderlichen Eigenschaften gezeigt. Die Theorie schließt die Betrachtung mehrschichtiger Flächentragwerke ein.
A directly formulated linear theory of viscoelastic plates and shells
Summary One kind to develop a general theory for plates and shells is the modelling of the structure as a two-dimensional deformable continuum and the direct approach to the kinematical relations, equations of motion and constitutive equations. Such a theory is physically and mathematically correct. For the application of such directly formulated theories it is nessecery to identify the so-called effective properties. In the paper the theory is formulated for geometrical and physical linearity. Each point of the continuum is an infinitesimal small rigid body with only 5 degrees of freedom (3 translations, 2 rotations). For such a kinematical assumption it is possible to develop a direct theory and to determinate all effective properties of the structure. The paper demonstrates the possibilities of the general theory for an isotropic viscoelastic plate with material properties varying over the thickness. The theory includes also the analysis of multilayered plates and shells.
  相似文献   

18.
A technique is proposed to solve elastoplastic deformation problems for branched shells of revolution under the action of asymmetric forces and a temperature field. The kinematic equations are derived within the framework of the linear Kirchhoff–Love theory of shells and the thermoelastic relations within the framework of the theory of small elastoplastic strains. The problem is given a variational formulation based on the virtual-displacement principle and the Fourier-series expansion of the unknown functions and loads with respect to the circumferential coordinate. The additional-load method is used to solve a nonlinear problem and the finite-elements method is used to carry out a numerical analysis. As an example, an asymmetric stress–strain analysis is performed for a cylindrical shell reinforced by a ring plate.  相似文献   

19.
应用分层壳理论并在壳厚方向彩二次插值函数推导出正交层合圆醉壳的动力学方程,并得出了简支层合圆柱壳自由振动方程的解,所给出的振动频率与三维分析的结果吻合良好,计算了前四阶模态对应的壳中应力,与第三、四阶模态对应的横向正应力与面内应力的比值远高于第一、二阶模态的应力比,计算结果说明,很高的横向正应力是高频动力响应中导致分层壳脱层破坏的一个主要因素。  相似文献   

20.
We construct equations of equilibrium and constitutive relations of linear theory of plates and shells with transverse shear strain taken into account, which are based on reducing the spatial elasticity relations with surface stresses taken into account to two-dimensional equations given on the shell median surface. We analyze the influence of surface elasticity moduli on the effective stiffness of plates and shells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号