首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
杨洁心  刘雷  徐君庭 《化学进展》2014,26(11):1811-1820
近年来嵌段共聚物在选择性溶剂中由结晶驱动形成胶束的自组装过程因其较好的可控性逐渐受到人们的关注.本文首先综述了嵌段共聚物结晶性胶束形貌和尺寸的影响因素,包括溶剂环境、共聚物结构、结晶温度等.然后介绍了结晶性胶束的活性生长以及"嵌段共胶束";最后提出了该研究领域目前存在的问题和今后可能的发展方向.  相似文献   

2.
研究了一系列具有不同链段长度和组成的聚4-乙烯基吡啶-聚苯乙烯-聚4-乙烯基吡啶多嵌段共聚物(P4VP-b-PS-b-P4VP)n在其选择性溶剂甲苯和pH<3的水中的胶束化过程,主要研究了多嵌段共聚物链段长度、溶液浓度和溶剂对其胶束形态的影响.透射电镜和原子力显微镜结果表明随着P4VP段链的相对增长,多嵌段共聚物在甲苯中的胶束形态由蠕虫链状向短棒状到球状胶束变化,而其在pH<3的水溶液中均形成球形胶束.由于特殊的链结构,聚合物的浓度对(P4VP-b-PS-b-P4VP)n多嵌段共聚物的胶束行为和胶束形态有着重要的影响.同时,(P4VP-b-PS-b-P4VP)n多嵌段共聚物分子量分布的多分散性对其在选择性溶剂中的胶束形态也有所影响.  相似文献   

3.
本文综述了“双亲性”嵌段共聚物在选择性溶剂中胶束行为和胶束形貌的主要影响因素,包括溶液温度、选择性溶剂种类、嵌段长度、链段结晶、链段与溶剂间氢键作用以及共聚物浓度对胶束最终形貌产生影响的因素;系统介绍了对嵌段共聚物胶束形貌进行调控的实验方法;在此同时介绍了对环境刺激如温度和pH变化等具有响应性能的“双亲性”嵌段共聚物在选择性溶剂中胶束行为研究的最新进展;最后提出了该研究领域目前存在的问题和今后的可能发展方向。  相似文献   

4.
利用核磁共振方法研究了AB型双嵌段共聚物(MPEG45-b-PA32)在选择性溶剂中的自组装行为及胶束化过程.嵌段共聚物在三氟乙酸中聚氨基酸和聚乙二醇链段均处于自由运动状态,聚丙氨酸链段为无规线团结构.在向该溶液中逐渐加入氘代水的过程中,聚丙氨酸链段又重新聚集形成规整的二级结构.结合1H-NMR和COSY谱分析,结果显示这一自组装过程伴随着聚(L-丙氨酸)链段由无规线团向α-螺旋结构的构象转变,同时嵌段共聚物逐渐形成核-壳型胶束结构.利用透射电镜观察了所形成胶束的形态,嵌段共聚物主要形成粒径150 nm到220 nm的球形胶束.  相似文献   

5.
采用耗散粒子动力学(Dissipative particle dynamics, DPD)模拟方法研究了三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯(PEO-PPO-PEO)的胶束化和凝胶化行为. 通过模拟得到了F127(EO99PO65EO99)水溶液的临界胶束浓度和临界凝胶浓度. 结果发现, 在298 K、 质量分数低于40%时, F127水溶液中形成的胶束形状均为球形. 此外,进一步研究了亲水嵌段长度对胶束结构及凝胶形成浓度的影响, 结果发现, 亲水嵌段越短, 越有利于长椭球状胶束的形成, 而临界凝胶浓度随着亲水嵌段PEO长度的增加而降低.  相似文献   

6.
将Leibler, Whitmore和Mayes等近期关于非晶嵌段共聚物“稀固体溶液”的理论应用于嵌段聚共聚物结晶型“稀固体溶液”结晶行为的研究。发现球状共聚物胶束既可起成核剂作用, 也可起抑制成核作用。报导了当共聚物胶束由球形变为非球形时, 共聚物胶束的上述作用都会发生较大的变化, 并根据Leibler和Mayes分别提出的球形和非球形胶束理论解释了这一实验现象。  相似文献   

7.
将Leibler,Whitmore和Mayes等近期关于非晶嵌段共聚物“稀固体溶液”的理论应用于嵌段聚共聚物结晶型“稀固体溶液”结晶行为的研究。发现球状共聚物胶束既可起成核剂作用,也可起抑制成核作用。报导了当共聚物胶束由球形变为非球形时,共聚物胶束的上述作用都会发生较大的变化,并根据Leibler和Mayes分别提出的球形和非球形胶束理论解释了这一实验现象。  相似文献   

8.
采用耗散粒子动力学方法,研究了两亲性嵌段共聚物和双疏性嵌段共聚物共混体系的自组装行为,探讨了双疏性嵌段共聚物的浓度以及双疏性嵌段共聚物的嵌段体积分数对聚集体结构的影响.结果表明,随着双疏性嵌段共聚物浓度的增加,聚集体发生自囊泡到棒状胶束再到同心圆多舱胶束的转变,且当浓度较高时,同心圆多舱胶束的同心圆层数量与浓度密切相关.当双疏性嵌段共聚物中的嵌段体积分数降低时,球形胶束由同心圆结构转变为非同心圆结构.此外,利用Minkowski泛函方法表征了多舱胶束的形成过程,发现这是一个先形成大尺度球形结构、再形成小尺度内核结构的分级组装过程.  相似文献   

9.
PS-b-PEO-b-PS三嵌段共聚物在选择性溶剂中的胶束化   总被引:7,自引:1,他引:6  
应用原子转移自由基聚合,制备了一组窄分布的PS-b-PEO-b-PS三嵌段共聚物。用^1HNMR和TEM表征了它们在选择性溶剂中的胶束化行为。^1HNMR结果表明,共聚物苯环上的质子峰出现在良溶剂(CHCl~3)中,而在选择性溶剂水中消失,证明上述三嵌段共聚物在选择性溶剂水中可逆自组装成以PS为核、PEO为壳的胶束。通过TEM考察了胶束的形状及大小,发现体系胶束尺寸呈多分散、粒径大,对形成的原因也提出了可能的解释。  相似文献   

10.
接枝共聚物聚苯乙烯-g-聚氧乙烯的微相分离形态研究   总被引:3,自引:0,他引:3  
 本文利用透射电子显微镜技术,以两性接校共聚物聚苯乙烯-g-聚氧乙烯为研究对象,研究了接枝共聚物的微相分离形态结构,发现聚苯乙烯-g-聚氧乙烯能形成微相分离结构,微区的形状和尺寸与共聚物的组成和侧链长度有关.文中还讨论了嵌段共聚物和接枝共聚物在形成微相分离结构时的共性和个性.  相似文献   

11.
Fluorine-containing amphiphilic block copolymers, poly(sodium methacrylate)-block-poly(nonafluorohexyl methacrylate) (NaMAm-b-NFHMAn) (m:n = 61:12, 72:33, 64:57), and the corresponding non-fluorine-containing amphiphilic block copolymer, poly(sodium methacrylate)-block-poly(hexyl methacrylate) (NaMAm-b-HMAn) (m:n = 64:10, 69:37, 67:50), were synthesized. Both polyNaMA-b-polyNFHMA and polyNaMA-b-polyHMA formed micelles above critical micelle concentrations, (cmc's), around 3 x 10(-5) to 1 x 10(-4) mol/L, while neither polymer decreased surface tension of aqueous solutions. The size and shape of the micelles were examined by dynamic light scattering, small-angle neutron scattering, and small-angle X-ray scattering. PolyNaMA-b-polyHMA appeared to form only spherical micelles, while polyNaMA-b-polyNFHMA with a long NFHMA segment formed both spherical and rodlike micelles. The micelles of fluorine-containing block copolymers were obviously larger than those of non-fluorine-containing block copolymers with the same chain length and the same hydrophilic/hydrophobic chain ratio. The fluorine-containing block copolymer selectively solubilized fluorinated dye into the water phase when a mixture of decafluorobiphenyl and 2,6-dimethylnaphthalene was added to the micelle solution.  相似文献   

12.
A series of ABA amphiphilic triblock copolymers possessing polystyrene (PS) central hydrophobic blocks, one group with “short” PS blocks (DP = 54–86) and one with “long” PS blocks (DP = 183–204) were synthesized by atom transfer radical polymerization. The outer hydrophilic blocks were various lengths of poly(oligoethylene glycol methyl ether) methacrylate, a comb‐like polymer. The critical aggregation concentrations were recorded for certain block copolymer samples and were found to be in the range circa 10−9 mol L−1 for short PS blocks and circa 10−12 mol L−1 for long PS blocks. Dilute aqueous solutions were analyzed by transmission electron microscopy (TEM) and demonstrated that the short PS block copolymers formed spherical micelles and the long PS block copolymers formed predominantly spherical micelles with smaller proportions of cylindrical and Y‐branched cylindrical micelles. Dynamic light scattering analysis results agreed with the TEM observations demonstrating variations in micelle size with PS and POEGMA chain length: the hydrodynamic diameters (DH) of the shorter PS block copolymer micelles increased with increasing POEGMA block lengths while maintaining similar PS micellar core diameters (DC); in contrast the values of DH and DC for the longer PS block copolymer micelles decreased. Surface‐pressure isotherms were recorded for two of the samples and these indicated close packing of a short PS block copolymer at the air–water interface. The aggregate solutions were demonstrated to be stable over a 38‐day period with no change in aggregate size or noticeable precipitation. The cloud point temperatures of certain block copolymer aggregate solutions were measured and found to be in the range 76–93 °C; significantly these were ∼11 °C higher in temperature than those of POEGMA homopolymer samples with similar chain lengths. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7739–7756, 2008  相似文献   

13.
Biodegradable and amphiphilic triblock copolymers poly(ethyl ethylene phosphate)-poly(3-hydroxy-butyrate)-poly(ethyl ethylene phosphate) (PEEP-b-PHB-b-PEEP) have been successfully synthesized through ring-opening polymerization. The structures are confirmed by gel permeation chromatography and NMR analyses. Crystallization investigated by X-ray diffraction reveals that the block copolymer with higher content of poly(ethyl ethylene phosphate) (PEEP) is more amorphous, showing decreased crystallizability. The obtained copolymers self-assemble into biodegradable nanoparticles with a core-shell micellar structure in aqueous solution, verified by the probe-based fluorescence measurements and transmission electronic microscopy (TEM) observation. The hydrophobic poly(3-hydroxybutyrate) (PHB) block serves as the core of the micelles and the micelles are stabilized by the hydrophilic PEEP block. The size and size distribution are related to the compositions of the copolymers. Paclitaxel (PTX) has been encapsulated into the micelles as a model drug and a sustained drug release from the micelles is observed. MTT assay also demonstrates that the block copolymers are biocompatible, rendering these copolymers attractive for drug delivery. Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060358036)  相似文献   

14.
The associative behavior of monodisperse diblock copolymers consisting of a hydrophilic poly(ethylene oxide) block and a hydrophobic poly(epsilon-caprolactone) or poly(gamma-methyl-epsilon-caprolactone) block has been studied in aqueous solution. Copolymers have been directly dissolved in water. The solution properties have been studied by surface tension, in relation to mesoscopic analyses by NMR (self-diffusion coefficients), transmission electron microscopy, and small-angle neutron and X-ray scattering. The experimental results suggest that micellization occurs at low concentration (approximately 0.002 wt %) and results in a mixture of unimers and spherical micelles that exchange slowly. The radius of the micelles has been measured (ca. 11 nm), and the micellar substructure has been extracted from the fitting of the SANS data with two analytical models. The core radius and the aggregation number change with the hydrophobic block length according to scaling laws as reported in the scientific literature. The poly(ethylene oxide) blocks are in a moderately extended conformation in the corona, which corresponds to about 25% of the completely extended chain. No significant modification is observed when poly(gamma-methyl-epsilon-caprolactone) replaces poly(epsilon-caprolactone) in the diblocks.  相似文献   

15.
Amphiphilic block copolymers,poly(ethylene oxide)-b-poly(N-acryloxysuccinimide) (PEO-b-PNAS) with various molecular weights have been successfully synthesized by atom transfer radical polymerization (ATRP) of NAS using functionalized PEO (PEO-Br) as ATRP macroinitiator.The self-assembling of the block copolymers in water,which is a good solvent for PEO and a non-solvent for PNAS.yielded spherical core-shell micelles with PNAS as core and PEO as shell.The cross-linked reaction of oxysuccinimide in PNAS ch...  相似文献   

16.
We report our finding of an optimal length scale for toughening of epoxies using spherical micelles formed by block copolymers. The amphiphilic diblock copolymer poly(hexylene oxide)‐poly(ethylene oxide) (PHO‐PEO) with 30 wt % PEO self‐assembled to form spherical micelles in a bisphenol A epoxy resin with a phenol novolac hardener. We systematically increased the size of the spherical micelles from 20–30 nm to 0.5–10 μm by swelling their PHO core using PHO homopolymer. Although all the blends were tougher than the unmodified epoxy, the largest enhancement of fracture resistance was measured in blends containing 0.1–1 μm spherical inclusions. This enhanced toughness was correlated with plastic deformation by shear banding in tensile test and greater roughness of the fracture surface. Smaller micelles neither induced plastic deformation nor contributed to surface roughness significantly whereas larger micelles acted as local defects resulting in early failure. These findings provide a framework in assessing the toughening effects of blended block copolymers on epoxy resins. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1125–1129, 2009  相似文献   

17.
以聚(ε-己内酯-b-L-丙交酯)/聚乙二醇单甲醚(P(CL-b-LLA)-b-mPEG)和聚(ε-己内酯-b-D,L-丙交酯)/聚乙二醇单甲醚(P(CL-b-DLLA)-b-mPEG)两种两亲嵌段共聚物为载体,选择了物理状态完全不同、而疏水性相近的吲哚美辛和维生素E为模型药物,研究了药物包载对高分子胶束形态的影响.发现两种药物在高分子胶束内部的增溶均会导致胶束形态发生显著改变,变化行为与胶束内核的结晶性和药物疏水性有关.另外,还研究了两种嵌段共聚物的载药性能,发现非结晶性疏水内核共聚物的药物包载率明显大于可结晶疏水内核的共聚物.  相似文献   

18.
In depth studies of the use of electron transfer reactions as a means to control the self-assembly of diblock copolymers with an electroactive metalloblock are reported. Specifically, the redox-triggered self-assembly of a series of polystyrene-block-polyferrocenylsilane (PS-b-PFS) diblock copolymers in dichloromethane solution is described. In the case of the amorphous polystyrene(n)-b-poly(ferrocenylphenylmethylsilane)(m) diblock copolymers (PS(n)-b-PFMPS(m): n = 548, m = 73; n = 71, m = 165; where n and m are the number-averaged degrees of polymerization), spherical micelles with an oxidized PFS core and a PS corona were formed upon oxidation of more than 50% of the ferrocenyl units by [N(C(6)H(4)Br-4)(3)][SbX(6)] (X = Cl, F). Analogous block copolymers containing a poly(ferrocenylethylmethylsilane) (PFEMS) metalloblock, which has a lower glass transition temperature, behaved similarly. However, in contrast, on replacement of the amorphous metallopolymer blocks by semicrystalline poly(ferrocenyldimethylsilane) (PFDMS) segments, a change in the observed morphology was detected with the formation of ribbon-like micelles upon oxidation of PS(535)-b-PFDMS(103) above the same threshold value. Again the coronas consisted of fully solvated PS and the core consisted of partially to fully oxidized PFS associated with the counteranions. When oxidation was performed with [N(C(6)H(4)Br-4)(3)][SbF(6)], reduction of the cores of the spherical or ribbon-like micelles with [Co(η-C(5)Me(5))(2)] enabled full recovery of the neutral chains and no significant chain scission was detected.  相似文献   

19.
The surface activity and the rheological properties of aqueous solutions of the amphiphilic block copolymer poly(n-butyl acrylate)-block-poly(acrylic acid) (PnBA-b-PAA) were studied as a function of the degree of neutralization, alpha, of the poly(acrylic acid) block. Although the block copolymer spontaneously forms spherical micelles having a stretched PAA corona and a collapsed PnBA core in water for alpha > 0.1, the solutions do not exhibit any surface activity at this degree of neutralization. Cryo-TEM micrographs show that the radii of the hydrophobic core of the largest micelles are as long as the length of the hydrophobic chain. The micelles, however, have a broad size distribution, and on average, as shown by SANS, the micelles are only about half as long. At concentrations as low as 1 wt %, the solutions exhibit highly viscoelastic behavior and have a yield stress value depending on alpha. The globular micelles are highly ordered in the bulk phase, and the viscoelastic properties are a result of the dense packing of the micelles. The addition of salt or cationic surfactants dramatically decreases the viscosity of the solution. The observed properties seem to be due to electrostatic interactions between the PAA chains of the micelles.  相似文献   

20.
We report the detailed characterization of micelles formed by two nonionic, amphiphilic ABC triblock copolymers. Poly(ethylene oxide)-b-poly(styrene)-b-1,2-poly(butadiene) (PEO-b-PS-b-PB) triblock copolymer "OSB" forms core-corona spherical micelles in aqueous solution, and the two hydrophobic blocks S and B are mixed homogeneously within the micelle core. PEO-b-PS-b-PB:C6F13I triblock copolymer "OSF" was prepared by selective fluorination of the B block in OSB with n-perfluorohexyl iodide. Fluorination of the B block induces internal segregation into an inner F core and an intermediate S shell. Furthermore, the strong incompatibility that results from fluorination drives a shape change into an oblate ellipsoid. These micellar morphologies are confirmed by combined light, neutron, and X-ray scattering measurements, as well as TEM imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号