首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical relaxation at hypersonic frequencies is measured using Brillouin spectroscopy for polyisobutylene, atactic polypropylene, polydimethyl siloxane, and polyvinyl acetate. The temperatures of maximum loss determined in the gigahertz range are compared to the published transitions maps for the above polymers. It is found that the hypersonic relaxation data fall on an extrapolation of the secondary main chain glass–rubber relaxation line above the region where the primary and secondary lines merge.  相似文献   

2.
A study of the occurrence of multiple glass transitions in acrylonitrile–butadiene rubbers (NBR) has been made. Copolymerization theory was used to predict the change in comonomer composition with conversion for comonomer ratios both above and below the calculated azeotropic composition of 64% butadiene/36% acrylonitrile by weight. The results of these calculations suggested that multiple glass transitions, which occur only in NBR of less than 36% acrylonitrile, were due to an incompatibility of copolymer species of divergent comonomer compositions. This was shown by differential thermal analysis to be the case for various experimental polymers of known comonomer composition. A series of NBR's was prepared by incremental addition of acrylonitrile monomer during polymerization, and the resultant glass transition temperatures were evaluated. Results obtained showed that experimental samples which had single glass transitions also had a much narrower spread of comonomer species than the corresponding rubber polymerized with the use of full initial charge of both monomers. The data indicate that NBR's having a single glass transition, regardless of acrylonitrile content, may be prepared by incremental addition of acrylonitrile monomer during polymerization. Existing copolymerization theory appears to be adequate for predicting incremental monomer addition schedules suitable for the polymerization of NBR's having a single glass transition.  相似文献   

3.
Acoustically transparent elastomers are the windows through which the US Navy views the ocean. For acoustic clarity and sensitivity, it is important that these elastomers operate well outside damping conditions as dictated by the temperatures and frequencies of interest. Damping behavior is characterized by a peak in the loss tangent and is associated with transitions in molecular mobility, such as the primary glass–rubber or alpha transition. However, the temperature and frequency location of this peak can shift in response to absorbed plasticizing fluids. This material characteristic is under investigation using dynamic mechanical analysis to assess its dependence on the plasticizer and polyurethane component chemistry. In this second stage of the research, the time–temperature superposition technique was employed to extrapolate storage modulus and loss factor to frequencies beyond the limits of the equipment. The technique appears to be valid for plasticized primary transition behavior but becomes circumspect when applied to secondary transition behavior.  相似文献   

4.
A stepwise temperature‐ and pressure‐scanning thermal analysis method was developed to measure glass‐transition temperature Tg in the two‐phase polymer–gas systems as a function of gas pressure p, and was used to confirm recent theoretical predictions that certain polymer–gas systems exhibit retrograde vitrification, that is, they undergo rubber‐to‐glass transition on heating. A complete Tgp profile delineating the glass–rubber phase envelope was established for the PMMA‐CO2 system. The retrograde vitrification behavior observed, where at certain gas pressures the polymer exists in the rubbery state at low and high temperatures and in the glassy state at intermediate temperatures, was similar to that reported previously based on the creep‐compliance measurements. The existence of the rubbery state at low temperatures was used to generate foams by saturating the polymer with CO2 at 34 atm and at temperatures in the range −0.2 to 24 °C followed by foaming at temperatures in the range 24 to 90 °C. Foams with very fine cell structure never reported before could be prepared by this technique. For example, PMMA foams with average cell size of 0.35 μm and cell density of 4.4 × 1013 cells/g were prepared by processing the low temperature rubbery phase. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 716–725, 2000  相似文献   

5.
Two‐dimensional time‐domain 1H NMR was used to investigate annealed isotactic polypropylene in the solid phase. The spin–lattice relaxation in the laboratory frame and in the rotating frame were correlated with the shape of the free induction decay to identify and characterize relaxation components over the temperature range −120 to 120 °C. Several phase transitions were observed, and three distinct solid phases, with different chain mobilities, were detected. Two of these phases were identified as regions with different mobilities within the crystalline phase. The third phase was characterized by a high degree of isotropy in molecular motion. This phase, identified as the amorphous phase, appeared as the polymer was heated above a low‐temperature (−45 °C) phase transition. All transitions observed at higher temperatures occurred exclusively in this phase. About one‐third of the polymer chains reside between crystalline lamellae, whereas the majority form amorphous regions outside fibrils of multilamellar structure. Furthermore, the glass‐to‐rubber transition, occurring above −15 °C, consists of three stages. During the first stage, between −15 °C and 15 °C, regions with an increased segment mobility (labeled intermediate phase) appear gradually within the amorphous phase. At 15 °C, the intermediate phase consists of ∼10% of the polymer units, or one‐third of the polymer units constituting the amorphous phase. Between 15 °C and 25 °C, the intermediate phase increases rapidly to 18%. This is associated with the appearance of semiliquid and liquid regions, likely within the intermediate phase. Polymer chain segments (and possibly entire chains) involved in the liquidlike phases exhibit heterogeneous molecular motion with a correlation frequency higher than 106 Hz. These two stages of glass‐to‐rubber transition occur within amorphous regions outside multilamellar structures. The third stage of the glass transition, appearing above 70 °C, is associated with the upper glass transition and occurs within the interlamellar amorphous phase. Finally, on a timescale of 100 ms or less, spin diffusion does not couple the amorphous regions outside fibrils with crystalline and amorphous regions within multilamellar fibrils. However, on a timescale of hundreds of milliseconds to seconds, all different regions within isotactic polypropylene are partially coupled. It is proposed that the relative magnitude of the crystalline magnetization, as observed in the T experiment, is a good measure of polymer crystallinity. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2487–2506, 2000  相似文献   

6.
Five topological units: low- and high-temperature amorphous blocks and three crystalline modifications that act as branching points in the networks of both amorphous blocks, have been detected for the first time in the pseudo-network structure of the unirradiated fluoroelastomer SKF-32 by means of thermomechanical spectrometry (TMS). When the rubber is γ-irradiated to a dose of 10 kGy, the structures of the intermediate and high-melting crystalline fractions degrade and their amorphized chains along with interjunction chains of both amorphous blocks assimilate into one amorphous block, and the latter is the block of the chemically crosslinked rubber already with a topologically diblock semicrystalline structure. A radiothermoluminescence (RTL) curve of the irradiated rubber shows four relaxation transitions (emissions peaks), with only the transition at–25°C almost coinciding with the glass transition temperature observed in thermomechanical analysis curve of the crosslinked rubber.  相似文献   

7.
Thermal transitions of a glassy, main chain, liquid crystalline, random copolyester, HIQ‐40, have been characterized. HIQ‐40 is made from 40 mol percent p‐hydroxybenzoic acid (HBA) and 30 mol % each of p‐hydroquinone (HQ) and isophthalic acid (IA). This polymer is soluble in organic solvents, permitting the preparation of thin, solution‐cast films that are in a glassy, metastable, optically isotropic state. On first heating of an isotropic HIQ‐40 film in a calorimeter, one glass transition is observed at low temperature (approximately 42°C), and is ascribed to the glass/rubber transition of the isotropic polymer. A cold crystallization exotherm centered near 150°C is observed. This is associated with the development of low levels of crystalline order. A broad melting endotherm is centered at about 310°C; this endotherm marks the melting of crystallites and the transformation to a nematic fluid. A nematic to isotropic transition was not observed by calorimetry. After quenching from the nematic melt, a Tg is observed in the range of 110–115°C and is associated with the glass/rubber transition of the nematically ordered polymer. Annealing optically isotropic films at temperatures above the isotropic glass transition results in the systematic development of axial order. In these annealed samples, Tg increases rapidly until it is near the annealing temperature, then Tg increases more slowly at longer annealing times. In as‐cast films annealed at 120–135°C, the light intensity transmitted through a sample held between crossed polarizers in an optical microscope (a qualitative measure of birefringence and, in turn, axial order) initially increases rapidly and uniformly throughout the sample and, at longer annealing times, approaches asymptotic values that are higher at higher annealing temperatures. The increase in transmitted intensity is ascribed to the development of axial order. The uniform increase in transmitted intensity suggests that ordering occurs by a rather global process and not via a nucleation and growth mechanism. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 505–522, 1999  相似文献   

8.
A tin-containing liquid crystalline side group polymer was synthesized and characterized. Two glass transitions were detected by calorimetric investigations. The X-ray pattern corresponds to a smectic C order of the side groups and a disordered isotropic main chain. Dielectric measurements show two relaxation ranges which are influenced by the glass transitions and a fast local process. The low frequency mechanism can be related to the reorientation of the side groups and the higher glass transition temperature. The second is connected with the α-relaxation of the main chain and freezes in at lower temperatures.  相似文献   

9.
The present paper reports induced glass transition dynamics appeared in porous silica (PSi) and nonporous silica (NPSi) nanoparticles. The size of these spherical particles is 5–15 nm for PSi and 15–20 nm for NPSi. PSi shows two glass transitions (Tg1 and Tg2) on heating, whereas NPSi shows one glass transition (Tg). The NPSi shows Tg at a higher temperature than PSi. PSi shows an exothermic transition on cooling, whereas NPSi shows no transition on cooling. Both Tgs appeared in PSi show dynamic behavior with the existence of positive activation energy. Both Tgs are reversible in PSi, whereas NPSi shows only one and irreversible Tg. The observed glass transitions in PSi and NPSi follow the configuron percolation model and show thermodynamic quasi-equilibrium with percolation threshold (fc) <1. The silica nanoparticles show induced glass transitions because of the presence of weak hydrogen bonds (HB) and a weak van der Waal force present in PSi, whereas the lack of porosity in NPSi shows irreversible Tg with stronger HB. The porosity of PSi makes it more reactive and dynamic due to its capillary behavior and shows its applicability in medical sciences, whereas the stability of NPSi makes it important for industrial research.  相似文献   

10.
The properties of filled polymers depend on the properties of the matrix and the filler, the concentration of the components and their interactions. In this research we investigated the rheological and mechanical properties and thermal stability of polychloroprene/chlorosulfonated polyethylene (CR/CSM) rubber blends filled with nano- and micro-silica particles. The density of the nano-silica filled CR/CSM rubber blends was lower than that of the micro-silica filled samples but the tensile strength and elongation at break were much higher. The nano-silica filled CR/CSM rubber blend has higher V r0/V rf values than micro-silica composites and show better polymer–filler interaction according to Kraus equation. The nano-silica filled CR/CSM rubber blends were transparent at all filler concentration, and have higher glass transition values than micro-silica filled compounds. The higher values of the glass transition temperatures for the nano- than the micro-filled cross-linked systems are indicated by DMA analysis. The nano-filled cross-linked systems have a larger number of SiO–C links than micro-filled cross-linked systems and hence increased stability.  相似文献   

11.
Dynamic mechanical properties of cellophane, amylose, and dextran have been obtained over the temperature range 100–520°K and frequency range 10?2 to 10+2 Hz on specimens containing various amounts of water. Four mechanical transitions have been characterized. At about 180°K, there is a γ transition that has been assigned to rotation of methylol groups; no comparable transition was found to exist in dextran. At about 240°K, there is a β transition that has been assigned to rotation of methylol–water complexes, but the β transition in dextran appears to be due to some other kind of motion. In cellophane at about 450°K there is an α2 transition which appears to have contributions from motion of chain segments in disordered regions. The α1 transition for cellophane occurs at temperatures too high to measure and may be due to segmental motions in chains within crystalline regions. Dextran and amylose were found to have at these same temperatures α loss processes that probably correspond to glass–rubber transitions in amorphous material. The changes in these mechanical loss mechanisms due to moisture uptake suggest that sorbed water associates with glucose repeat units in ways ranging from those which stiffen molecular structure to those which allow greater freedom for other types of motion to occur.  相似文献   

12.
The relaxation behavior of poly(tetra ethylene oxide terephthaloyl-bis-4-oxybenzoate), PTETOB, was analyzed by thermally stimulated depolarization currents, TSDC, and dynamic mechanical techniques, DMTA, and the results compared with those obtained by differential scanning calcrimetry, thermo-optical analysis, and x-ray diffraction. In the low temperature region, ?173–30°C, three main transitions were observed and assigned to the γ relaxation, the glass transition of the mesophase and the glass transition temperature of the amorphous material. The complex behavior observed in the range 110–160°C was as signed to a crystal-crystal transition which competed with the formation of a mesophase and afterward the formation of a smectic A mesophase. At higher temperatures, was observed the transition from the smectic A mesophase to a nematic one, prior to the isotropization temperature. In the TSDC experiments the formation of a permanent electret was detected and the charges trapped in the mesophase were canceled only at the isotropization temperature. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Poly(aramid silicone) (PAS) multiblock copolymers were synthesized by the low‐temperature solution polycondensation of isophthaloyl dichloride (IPC) and two diamines, diamino poly(dimethyl siloxane) (PDMS; number‐average molecular weight = 1680) and 3,4′‐diaminodiphenylether (3,4′‐DAPE), in tetrahydrofuran/dimethylacetamide (2/1 v/v). Two synthetic methods for the control of the PAS sequence were used: a one‐step synthesis that presumably gave PAS with a random sequence and the polymerization of 3,4′‐DAPE with a presynthesized dimer, IPC–PDMS–IPC (two‐step synthesis), that presumably gave PAS with an alternating sequence of 3,4′‐DAPE and PDMS segments. In a 1H NMR study of the amide protons of the 3,4′‐DAPE component in PAS, the relative length of the 3,4′‐DAPE segment of randomly sequenced PAS to that of ideally sequenced PAS could be estimated. The glass‐transition temperatures of the 3,4′‐DAPE and PDMS segments of random PAS were 152–234 and ?104 to ?117 °C, respectively, whereas the alternating PAS sequences showed no glass transition for the 3,4′‐DAPE segments. A tensile test indicated that randomly sequenced PAS behaved like a rubber‐toughened material at lower PDMS contents and like a thermoplastic elastomer at higher PDMS contents, whereas the alternately sequenced PAS behaved like a very soft rubber, showing a high value of elongation at the breaking point. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 841–852, 2003  相似文献   

14.
The temperature dependence of density in terephthalylidene-bis-p-n-alkylanilines (TBAA5 and 6) is studied to investigate the phase transitions, associated volume jumps, order of the transitions, estimated pressure dependence of transition temperatures, and pretransitional effects. The compounds exhibit nematic, smectic A, smectic C, smectic F, smectic G and smectic H phases with higher clearing temperatures. The smectic A to smectic C transition, which is a fluctuation induced first order transition in TBAA5, is found to be a second order transition in TBAA5 and 6. The results are discussed in the light of other experimental reports. The estimated pressure dependence of transition temperatures along with the reported experimental P-T data are discussed. The N-SA transition is first order in TBAA5 and 6. The studies across other transitions are also discussed.  相似文献   

15.
It is shown that, at the yield stress, glassy polymers exhibit viscous flow which is in agreement with the generalized theory of Eyring. The study of the yield stress over a wide range of temperatures and strain rates provides evidence on the secondary transitions found by other methods. From our measurements we conclude that every secondary transition corresponds to the liberation of one of the degrees of freedom of a segment of the main chain.  相似文献   

16.
A modulated-temperature differential scanning calorimetry (M-TDSC) method for the analysis of interphases in multi-component polymer materials has been developed further. As examples, interphases in a polybutadiene-natural rubber (50:50 by mass) blend, a poly(methyl methacrylate)-poly(vinyl acetate) (50:50 by mass) structured latex film, a polyepichlorohydrinpoly(vinyl acetate) bilayer film, and polystyrene-polyurethane (40:60 by mass) and poly(ethyl methacrylate)-polyurethane (60:40 by mass) interpenetrating polymer networks were investigated. The mass fraction of interphase and its composition can be calculated quantitatively. These interphases do not exhibit clear separate glass transition temperatures, but occur continually between the glass transition temperatures of the constituent polymers. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Constant pressure constant temperature molecular dynamics method is employed to investigate the atomistic scale dynamics of a model Bisphenol A polycarbonate in the vicinity of its glass transition temperature. First, the glass transition temperature and the thermal expansion coefficients of the polymer are predicted by performing simulations at different temperatures. To explore the significance of different modes of motion, various types of time correlation functions are utilized in analyzing the trajectories. In these nanosecond scale simulations, the motion of the chain segments is found to be highly localized with little reorientation of the vectors representing these segments. Detailed analysis of trajectories and the correlation functions of the backbone dihedrals and side methyl groups indicates that they exhibit numerous conformational transitions. The activation energies of the conformational transitions obtained from the simulation are generally larger than the potential barriers for the rotations of these dihedrals, however, both show the same trend. We also have estimated the phenylene ring flip activation energy as 12.6 kcal/mol and the flip frequency as 0.77 MHz at 300 K. These values fall either fall within the range determined by various NMR spectroscopy experiments or slightly out of the range. The study shows that the conformational transitions between the adjacent dihedrals are strongly correlated. Three basic cooperative modes are identified from the simulation. They are: a positive synchronous rotation of two phenylene rings, a negative synchronous rotation of two phenylene rings, and a carbonate group rotation. Above the glass transition temperature, the large scale cooperative motions become much more significant.  相似文献   

18.
An adiabatic heat capacity study of poly(diethylsiloxane) confirms that it has a single glass transition occurring at 130°K, the lowest glass transition reported to date for a high molecular weight polymer. The two previously reported glass transitions are first-order thermodynamic peaks whose location is dependent upon prior thermal history. Combination of these data with low-temperature x-ray diffraction indicates that the transitions in this temperature range are related to a crystal–crystal transformation. A crystal melting transition is observed near 270°K. In addition an anomalous rise in heat capacity near 60°K suggests a sub-glass transition of unknown origin.  相似文献   

19.
Quasielastic neutron scattering was utilized to investigate the influence of confinement on polymer dynamics. Poly(methyl phenyl siloxane) chains were studied in the bulk as well as severely confined within the approximately 1-2 nm interlayer spacing of intercalated polymer/layered organosilicate nanohybrids. The temperature dependence of the energy resolved elastic scattering measurements for the homopolymer and the nanocomposites exhibit two distinct relaxation steps: one due to the methyl group rotation and one that corresponds to the phenyl ring flip and the segmental motion. Quasielastic incoherent measurements show that the very local process of methyl rotation is insensitive to the polymer glass transition temperature and exhibits a wave-vector independent relaxation time and a low activation energy, whereas it is not affected at all by the confinement. At temperatures just above the calorimetric glass transition temperature, the observed motion is the phenyl ring motion, whereas the segmental motion is clearly identified for temperatures about 60 K higher than the glass transition temperature. For the nanohybrid, the segmental motion is found to be strongly coupled to the motion of the surfactant chains for temperatures above the calorimetric glass transition temperature of the bulk polymer. However, the mean square displacement data show that the segmental motion in confinement is faster than that of the bulk polymer even after the contribution of the surfactant chains is taken into consideration.  相似文献   

20.
Abstract

The temperature dependence of density in terephthalylidene-bis-p-n-alkylanilines (TBAA5 and 6) is studied to investigate the phase transitions, associated volume jumps, order of the transitions, estimated pressure dependence of transition temperatures, and pretransitional effects. The compounds exhibit nematic, smectic A, smectic C, smectic F, smectic G and smectic H phases with higher clearing temperatures. The smectic A to smectic C transition, which is a fluctuation induced first order transition in TBAA5, is found to be a second order transition in TBAA5 and 6. The results are discussed in the light of other experimental reports. The estimated pressure dependence of transition temperatures along with the reported experimental P[sbnd]T data are discussed. The N[sbnd]SA transition is first order in TBAA5 and 6. The studies across other transitions are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号